设计方案

时间:2025-01-19 13:23:03 设计 我要投稿

设计方案(集合)

  为了确保事情或工作有效开展,就不得不需要事先制定方案,方案是阐明行动的时间,地点,目的,预期效果,预算及方法等的书面计划。方案应该怎么制定才好呢?以下是小编为大家收集的设计方案4篇,欢迎阅读,希望大家能够喜欢。

设计方案(集合)

设计方案 篇1

  活动目标:

  1、能利用图形添加的方法设计出于众不同的脸谱。

  2、练习用丰富的线条细密地分割背景。

  3、能大胆想象,大胆创造并体验成功的快乐。

  活动准备:

  1、京剧脸谱、非洲部落的面具等图片。

  2、脸谱作品数幅。

  3、勾线笔、油画棒、8K铅画纸。

  活动过程:

  一、预热阶段:

  师:你们看过京剧吗?唱京剧时他们脸上要戴什么?

  在非洲部落里,当他们庆祝节日时,也会带上各种各样的面具跳舞,唱歌。

  二、图形刺激:

  1、欣赏脸谱及面具的图片、照片,感受造型的`夸张、变形及色彩的丰富。

  2、教师示范用图形添加的方法画各种有趣、奇特的脸谱。

  3、引导幼儿欣赏脸谱作品。

  三、创造表现:

  1、提出作画要求:

  (1)、脸谱轮廓要画大,可以画长方形、椭圆形等各种形状的脸谱。

  (2)、造型要夸张,奇特,可以在大脸谱中套小脸谱。

  (3)、背景分割稍细密些。

  (4)、涂色: 脸谱 (一个系列的颜色或五颜六色)

  背景 (一个系列的颜色)

  四、作品赏评:

  1、把幼儿的作品布置成脸谱展,引导幼儿欣赏。

  2、讨论:哪个脸谱最特别,你喜欢哪个脸谱,为什么?

设计方案 篇2

  【教学内容】

  《义务教育课程标准实验教科书数学》六年级下册第68页。

  【教学目标】

  1.经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解决简单的实际问题。

  2. 通过操作发展学生的类推能力,形成比较抽象的数学思维。

  3. 通过抽屉原理的灵活应用感受数学的魅力。

  【教学重点】

  经历抽屉原理的探究过程,初步了解抽屉原理。

  【教学难点】

  理解抽屉原理,并对一些简单实际问题加以模型化。

  【教具、学具准备】

  每组都有相应数量的盒子、铅笔、书。

  【教学过程】

  一、课前游戏引入。

  师:同学们在我们上课之前,先做个小游戏:老师这里准备了4把椅子,请5个同学上来,谁愿来?(学生上来后)

  师:听清要求 ,老师说开始以后,请你们5个都坐在椅子上,每个人必须都坐下,好吗?(好)。这时教师面向全体,背对那5个人。

  师:开始。

  师:都坐下了吗?

  生:坐下了。

  师:我没有看到他们坐的情况,但是我敢肯定地说:不管怎么坐,总有一把椅子上至少坐两个同学我说得对吗?

  生:对!

  师:老师为什么能做出准确的判断呢?道理是什么?这其中蕴含着一个有趣的数学原理,这节课我们就一起来研究这个原理。下面我们开始上课,可以吗?

  【点评】教师从学生熟悉的抢椅子游戏开始,让学生初步体验不管怎么坐,总有一把椅子上至少坐两个同学,使学生明确这是现实生活中存在着的一种现象,激发了学生的学习兴趣,为后面开展教与学的活动做了铺垫。

  二、通过操作,探究新知

  (一)教学例1

  1.出示题目:有3枝铅笔,2个盒子,把3枝铅笔放进2个盒子里,怎么放?有几种不同的放法?

  师:请同学们实际放放看,谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况 (3,0) (2,1)

  【点评】此处设计教师注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。

  师:5个人坐在4把椅子上,不管怎么坐,总有一把椅子上至少坐两个同学。3支笔放进2个盒子里呢?

  生:不管怎么放,总有一个盒子里至少有2枝笔?

  是:是这样吗?谁还有这样的发现,再说一说。

  师:那么,把4枝铅笔放进3个盒子里,怎么放?有几种不同的放法?请同学们实际放放看。(师巡视,了解情况,个别指导)

  师:谁来展示一下你摆放的情况?(指名摆)根据学生摆的情况,师板书各种情况。

  (4,0,0)

  (3,1,0)

  (2,2,0)

  (2,1,1),

  师:还有不同的放法吗?

  生:没有了。

  师:你能发现什么?

  生:不管怎么放,总有一个盒子里至少有2枝铅笔。

  师:总有是什么意思?

  生:一定有

  师:至少有2枝什么意思?

  生:不少于两只,可能是2枝,也可能是多于2枝?

  师:就是不能少于2枝。(通过操作让学生充分体验感受)

  师:把3枝笔放进2个盒子里,和把4枝笔饭放进3个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。这是我们通过实际操作现了这个结论。那么,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论呢?

  学生思考组内交流汇报

  师:哪一组同学能把你们的想法汇报一下?

  组1生:我们发现如果每个盒子里放1枝铅笔,最多放3枝,剩下的1枝不管放进哪一个盒子里,总有一个盒子里至少有2枝铅笔。

  师:你能结合操作给大家演示一遍吗?(学生操作演示)

  师:同学们自己说说看,同位之间边演示边说一说好吗?

  师:这种分法,实际就是先怎么分的?

  生众:平均分

  师:为什么要先平均分?(组织学生讨论)

  生1:要想发现存在着总有一个盒子里一定至少有2枝,先平均分,余下1枝,不管放在那个盒子里,一定会出现总有一个盒子里一定至少有2枝。

  生2:这样分,只分一次就能确定总有一个盒子至少有几枝笔了?

  师:同意吗?那么把5枝笔放进4个盒子里呢?(可以结合操作,说一说)

  师:哪位同学能把你的想法汇报一下,

  生:(一边演示一边说)5枝铅笔放在4个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

  师:把6枝笔放进5个盒子里呢?还用摆吗?

  生:6枝铅笔放在5个盒子里,不管怎么放,总有一个盒子里至少有2枝铅笔。

  师:把7枝笔放进6个盒子里呢?

  把8枝笔放进7个盒子里呢?

  把9枝笔放进8个盒子里呢?

  :

  你发现什么?

  生1:笔的枝数比盒子数多1,不管怎么放,总有一个盒子里至少有2枝铅笔。

  师:你的发现和他一样吗?(一样)你们太了不起了!同桌互相说一遍。

  【点评】教师关注了抽屉原理的最基本原理,物体个数必须要多于抽屉个数,化繁为简,此处确实有必要提领出来进行教学。在学生自主探索的基础上,教师注意引导学生得出一般性的结论:只要放的铅笔数盒数多1,总有一个盒里至少放进2支。通过教师组织开展的扎实有效的教学活动,学生学的有兴趣,发展了学生的类推能力,形成比较抽象的数学思维。

  2.解决问题。

  (1)课件出示:5只鸽子飞回4个鸽笼,至少有2只鸽子要飞进同一个鸽笼里,为什么?

  (学生活动独立思考 自主探究)

  (2)交流、说理活动。

  师:谁能说说为什么?

  生1:如果一个鸽笼里飞进一只鸽子,最多飞进4只鸽子,还剩一只,要飞进其中的一个鸽笼里。不管怎么飞,至少有2只鸽子要飞进同一个鸽笼里。

  生2:我们也是这样想的。

  生3:把5只鸽子平均分到4个笼子里,每个笼子1只,剩下1只,放到任何一个笼子里,就能保证至少有2只鸽子飞进同一个笼里。

  生4:可以用54=11,余下的1只,飞到任何一个鸽笼里都能保证至少有2只鸽子飞进一个个笼里,所以,至少有2只鸽子飞进同一个笼里的结论是正确的。

  师:许多同学没有再摆学具,证明这个结论是正确的,用的什么方法?

  生:用平均分的方法,就能说明存在总有一个鸽笼至少有2只鸽子飞进一个个笼里。

  师:同意吗?(生:同意)老师把这位同学说的算式写下来,(板书:54=11)

  师:同位之间再说一说,对这种方法的理解。

  师:现在谁能说说你对总有一个鸽笼里至少飞进2只鸽子的`理解

  生:我们发现这是必然存在的一个现象,不管鸽子怎样飞回鸽笼,一定会有一个鸽笼里至少有2只鸽子。

  师:同学们都有这个发现吗?

  生众:发现了。

  师:同学们非常了不起,善于运用观察、分析、思考、推理、证明的方法研究问题,得出结论。同学们的思维也在不知不觉中提升了许多,那么让我们再来看这样一组问题。

  (二)教学例2

  1.出示题目:把5本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

  把7本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

  把9本书放进2个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

  (留给学生思考的空间,师巡视了解各种情况)

  2.学生汇报。

  生1:把5本书放进2个抽屉里,如果每个抽屉里先放2本,还剩1本,这本书不管放到哪个抽屉里,总有一个抽屉里至少有3本书。

  板书:5本 2个 2本 余1本 (总有一个抽屉里至有3本书)

  7本 2个 3本 余1本(总有一个抽屉里至有4本书)

  9本 2个 4本 余1本(总有一个抽屉里至有5本书)

  师:2本、3本、4本是怎么得到的?生答完成除法算式。

  52=2本1本(商加1)

  72=3本1本(商加1)

  92=4本1本(商加1)

  师:观察板书你能发现什么?

  生1:总有一个抽屉里的至少有2本只要用 商+ 1就可以得到。

  师:如果把5本书放进3个抽屉里,不管怎么放,总有一个抽屉里至少有几本书?

  生:总有一个抽屉里的至少有3本只要用53=1本2本,用商+ 2就可以了。

  生:不同意!先把5本书平均分放到3个抽屉里,每个抽屉里先放1本,还剩2本,这2本书再平均分,不管分到哪两个抽屉里,总有一个抽屉里至少有2本书,不是3本书。

  师:到底是商+1还是商+余数呢?谁的结论对呢?在小组里进行研究、讨论。

  交流、说理活动:

  生1:我们组通过讨论并且实际分了分,结论是总有一个抽屉里至少有2本书,不是3本书。

  生2:把5本书平均分放到3个抽屉里,每个抽屉里先放1本,余下的2本可以在2个抽屉里再各放1本,结论是总有一个抽屉里至少有2本书。

  生3∶我们组的结论是5本书平均分放到3个抽屉里,总有一个抽屉里至少有2本书用商加1就可以了,不是商加2。

  师:现在大家都明白了吧?那么怎样才能够确定总有一个抽屉里至少有几个物体呢?

  生4:如果书的本数是奇数,用书的本数除以抽屉数,再用所得的商加1,就会发现总有一个抽屉里至少有商加1本书了。

  师:同学们同意吧?

  师:同学们的这一发现,称为抽屉原理, 抽屉原理又称鸽笼原理,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称狄里克雷原理,也称为鸽巢原理。这一原理在解决实际问题中有着广泛的应用。抽屉原理的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。下面我们应用这一原理解决问题。

  3.解决问题。71页第3题。(独立完成,交流反馈)

  小结:经过刚才的探索研究,我们经历了一个很不简单的思维过程,我们获得了解决这类问题的好办法,下面让我们轻松一下做个小游戏。

  【点评】在这一环节的教学中教师抓住了假设法最核心的思路就是用有余数除法 形式表示出来,使学生学生借助直观,很好的理解了如果把书尽量多地平均分给各个抽屉里,看每个抽屉里能分到多少本书,余下的书不管放到哪个抽屉里,总有一个抽屉里比平均分得的书的本数多1本。特别是对某个抽屉至少有书的本数是除法算式中的商加1, 而不是商加余数,教师适时挑出针对性问题进行交流、讨论,使学生从本质上理解了抽屉原理。

  三、应用原理解决问题

  师:我这里有一副扑克牌,去掉了两张王牌,还剩52张,我请五位同学每人任意抽1张,听清要求,不要让别人看到你抽的是什么牌。请大家猜测一下,同种花色的至少有几张?为什么?

  生:2张/因为54=11

  师:先验证一下你们的猜测:举牌验证。

  师:如有3张同花色的,符合你们的猜测吗?

  师:如果9个人每一个人抽一张呢?

  生:至少有3张牌是同一花色,因为94=21

  四、全课小结

  【点评】当学生利用有余数除法解决了具体问题后,教师引导学生总结归纳这一类抽屉问题的一般规律,使学生进一步理解掌握了抽屉原理。

设计方案 篇3

  方法/步骤

  第一步:座位后面宜有靠(墙或柜),不能背着门或走道。

  人的后脑为脑波放射区,也是人体感应气场最敏感的部位之一;因此,座位的后方最好是固定、不动的东西;如果背后有人走动,容易让人精神不集中,无形中把一部分注意力转到后脑,长久下来会消耗掉能量,影响工作效率和健康。

  第二步:座位前方不能紧贴墙壁(缓冲区不够)。

  人的眼睛长在前面,就是要捕捉比较多的讯息;如果座位太贴近墙面,反而看不见四周的人和事物,会造成潜意识的不安,也会影响到神精系统的稳定。

  第三步:座位不能直冲大门。

  由于大门为整个办公室的气流和能量出入口,座位正对着大门,会被入门的气场冲到,容易影响一个人的潜意识、神精系统,造成脾气火爆或无端生病的情况。可以在门口立一座屏风或植物,作为化解之道。

  第四步:座位最好不要面对面。

  如座位前方也有人面对面,也是一种心理煞,没有自己的隐私空间,不是会造成彼此的`不舒服,就是会分散注意力,喜欢和对方有说有笑,而影响工作。最好是两人之间放一些盆栽或文件隔开。

  第五步:座位正上方不能有大梁或吊灯。

  人的头顶虽然没有长眼睛,但对头顶的东西也特别敏感,总怕上面会有东西掉下来;因此,如果你知道你座位上方有梁或吊灯,你的潜意识无形中就会武装起来,随时准备保护自己,久了你会耗掉很多能量,没作多少事就累得半死。可以的话,移一下位子吧

  第六步:座位不能正对着主管或老板的房间门。

  主管和老板,一般来讲是管制上班族的,按古人的讲法就是“克”上班族的;除非你眼中没有主管和老板,不然,最好不要正面对着他们的房间,因为你会受到他们一举一动的影响,而无法集中精神,久了也容易和他们起冲突。因此,据说老板要那个人走路,就把他的位子调到门口,久了,他们自动就离开了。

  第七步:座位不能正对着厨房或瓦斯炉、冰箱。

  厨房,是火气的来源,如靠火气太近,也会影响人体的神精系统和生理场,长久下来,更会阻碍一个人的思考能力,最好是避开。

设计方案 篇4

  教学内容

  苏教版九年义务教育六年制小学数学第八册P47—49三角形的面积,“练一练”及练习十第1—3题

  教学目标:

  1、 理解和掌握三角形的面积计算公式。

  2、 通过操作、观察、比较,进一步发展空间观念,提高分析、综合、抽象、概括和运用转化的方法解决实际问题的能力。

  教学重、难点

  理解和掌握怎样用两个完全一样的三角形转化成平行四边形,推导出三角形的面积计算公式。

  教具学具准备:

  1、 若干个完全一样的按比例放大的锐角三角形、直角三角形、钝角三角形。一套多媒体课件。

  2、 每个学生准备一个长方形、两个平行四边形,一把剪刀。

  一、导入课题:

  1、师:同学们,今天我们要学习三角形的面积,板书:三角形的面积),看到课题,你想知道什么?

  [可能出现:a、三角形面积计算公式是什么?b、三角形面积是怎样推导出来的?c、学三角形的面积有什么作用?]

  2、解决方案:

  师:要想知道三角形的面积怎样求,你想用什么方法来研究?你是怎么想到的?

  (前面我们刚学过平行四边形面积的推导,是把平行四边形通过分割、平移、拼补转化成长方形研究的,所以我想到了转化的方法。板书:转化)

  师:今天这节课让老师陪着大家运用转化的方法研究三角形的面积。

  [评析:谈话式导入,学生看课题提出自己想知道的问题,参与了课堂学习目标的制定。课堂导入找准教学起点,沟通了新旧知识的联系,让学生明白本课的学习也是运用转化的方法进行研究,激发了学生的学习兴趣,调动了学生的情感,为新知的学习打下了基础。]

  二、新授

  (一) 实验一:剪

  1、师:下面让我们做几个实验,好不好?

  (学生拿出准备好的一个长方形,两个平行四边形。平行四边形上画好底和高。)

  2、(1)师:请大家拿出准备好的三个图形,平放在桌上,用剪刀沿虚线把它们剪开,剪开后一对一对的放在一起。(标上1、2、3号)

  (2)反馈。师:你沿虚线把平行四边形剪开,得到了什么图形?(让学生把得到的两个三角形举给大家看。)师:其他的两个平行四边形剪开后能得到两个三角形吗?

  (3)师:通过刚才的实验我们知道一个平行四边形可以分成两个三角形,这两个三角形大小、形状怎样?你怎么知道的?(学生演示重合的过程)

  师:重合了,在数学上叫“完全一样”(板书:两个完全一样)

  师:现在你能用“完全一样”说一说我们剪到的三角形吗?(学生说1号是两个完全一样的三角形,2号、3号是两个完全一样的`三角形)

  学生演示重合过程,课件演示剪、重合的过程。

  师:谁能说一说根据刚才的实验,你想到了什么?

  小结并出现字幕:一个平行四边形可以分成两个完全一样的三角形。

  (4)师:这两个三角形与原来平行四边形面积相等,(课件演示两个完全一样的三角形拼成平行四边形的过程)其中一个三角形的面积和原来平行四边形的面积有什么关系?(课件闪动演示,学生回答,出现字幕:其中一个三角形的面积等于这个平行四边形面积的一半)

  师:谁能完整地说一说,通过刚才的实验,你得出什么结论?看字幕说:一个平行四边形可以分成两个完全一样的三角形。其中一个三角形的面积等于这个平行四边形面积的一半。

  说一说1号、2号、3号各是什么三角形?(板书:锐角三角形、直角三角形、钝角三角形)

  [评析:学生自主探索,动手实践。通过剪一剪、比一比、议一议,使学生多种感官积极参加学习活动,理解“一个平行四边形可以剪成两个完全一样的三角形,其中一个三角形的面积等于这个平行四边形面积的一半。”为学习三角形的面积指明了思维的方向。]

【设计方案】相关文章:

经典设计方案08-17

设计方案05-12

设计方案05-13

设计方案05-13

设计方案05-14

设计方案05-14

设计方案经典05-22

(经典)设计方案09-01

(精选)设计方案09-10

[经典]设计方案09-16