必修一数学总结

时间:2024-09-04 17:06:37 总结范文 我要投稿

必修一数学总结

  总结是对某一阶段的工作、学习或思想中的经验或情况进行分析研究的书面材料,它可以促使我们思考,因此我们要做好归纳,写好总结。你想知道总结怎么写吗?下面是小编为大家收集的必修一数学总结,欢迎阅读与收藏。

必修一数学总结

必修一数学总结1

  函数的有关概念

  函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈

  (1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;

  (2)与x的值相对应的.y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

  函数的三要素:定义域、值域、对应法则

  函数的表示方法:(1)解析法:明确函数的定义域

  (2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。

  (3)列表法:选取的自变量要有代表性,可以反应定义域的特征。

  4、函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.

  (2)画法

  A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换。

  (3)函数图像变换的特点:

  1)函数y=f(x)关于X轴对称y=-f(x)

  2)函数y=f(x)关于Y轴对称y=f(-x)

  3)函数y=f(x)关于原点对称y=-f(-x)

必修一数学总结2

  知识点总结

  本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。

  一、函数的单调性

  1、函数单调性的定义

  2、函数单调性的判断和证明:(1)定义法 (2)复合函数分析法 (3)导数证明法 (4)图象法

  二、函数的奇偶性和周期性

  1、函数的奇偶性和周期性的定义

  2、函数的奇偶性的判定和证明方法

  3、函数的周期性的判定方法

  三、函数的图象

  1、函数图象的作法 (1)描点法 (2)图象变换法

  2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。

  常见考法

  本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的'每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。

  误区提醒

  1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。

  2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。

  3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。

  4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。

  5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。

必修一数学总结3

  基本初等函数有哪些

  基本初等函数包括以下几种:

  (1)常数函数y = c( c为常数)

  (2)幂函数y = x^a( a为常数)

  (3)指数函数y = a^x(a>0, a≠1)

  (4)对数函数y =log(a) x(a>0, a≠1,真数x>0)

  (5)三角函数以及反三角函数(如正弦函数:y =sinx反正弦函数:y = arcsin x等)

  基本初等函数性质是什么

  幂函数

  形如y=x^a的函数,式中a为实常数。

  指数函数

  形如y=a^x的函数,式中a为不等于1的正常数。

  对数函数

  指数函数的反函数,记作y=loga a x,式中a为不等于1的正常数。指数函数与对数函数之间成立关系式,loga ax=x。

  三角函数

  即正弦函数y=sinx,余弦函数y=cosx,正切函数y=tanx,余切函数y=cotx,正割函数y=secx,余割函数y=cscx(见三角学)。

  反三角函数

  三角函数的反函数——反正弦函数y = arc sinx,反余弦函数y=arc cosx (-1≤x≤1,初等函数0≤y≤π),反正切函数y=arc tanx,反余切函数y = arc cotx(-∞

  学习数学小窍门

  建立数学纠错本。

  把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

  限时训练。

  可以找一组题(比如10道选择题),争取限定一个时间完成;也可以找1道大题,限时完成。这主要是创设一种考试情境,检验自己在紧张状态下的思维水平。

  调整心态,正确对待考试。

  首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。

  数学函数的值域与最值知识点

  1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

  (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.

  (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.

  (3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.

  (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.

  (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.

  (7)利用函数的`单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.

  (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.

  2、求函数的最值与值域的区别和联系

  求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异.

  如函数的值域是(0,16],最大值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.

  3、函数的最值在实际问题中的应用

  函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.

必修一数学总结4

  一、集合及其表示

  1、集合的含义:

  “集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。

  所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。

  2、集合的表示

  通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。

  有一些特殊的集合需要记忆:

  非负整数集(即自然数集)N正整数集N_或N+

  整数集Z有理数集Q实数集R

  集合的表示方法:列举法与描述法。

  ①列举法:{a,b,c……}

  ②描述法:将集合中的元素的公共属性描述出来。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}

  ③语言描述法:例:{不是直角三角形的三角形}

  例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}

  强调:描述法表示集合应注意集合的代表元素

  A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。

  3、集合的三个特性

  (1)无序性

  指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

  例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

  解:,A=B

  注意:该题有两组解。

  (2)互异性

  指集合中的元素不能重复,A={2,2}只能表示为{2}

  (3)确定性

  集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的。情况。

  集合的含义

  集合的中元素的三个特性:

  元素的确定性如:世界上的山

  元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}

  元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合

  3、集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  集合的表示方法:列举法与描述法。

  注意:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集NxN+整数集Z有理数集Q实数集R

  列举法:{a,b,c……}

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x(R|x—3>2},{x|x—3>2}

  语言描述法:例:{不是直角三角形的三角形}

  Venn图:

  4、集合的分类:

  有限集含有有限个元素的集合

  无限集含有无限个元素的集合

  空集不含任何元素的集合例:{x|x2=—5}

  对数函数

  对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

  右图给出对于不同大小a所表示的函数图形:

  可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

  (1)对数函数的定义域为大于0的实数集合。

  (2)对数函数的值域为全部实数集合。

  (3)函数总是通过(1,0)这点。

  (4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

  (5)显然对数函数。

  1、函数零点的定义

  (1)对于函数)(xfy,我们把方程0)(xf的实数根叫做函数)(xfy)的零点。

  (2)方程0)(xf有实根函数(yfx)的图像与x轴有交点函数(yfx)有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(xf是否有实数根,有几个实数根。函数零点的求法:解方程0)(xf,所得实数根就是(fx)的零点(3)变号零点与不变号零点

  ①若函数(fx)在零点0x左右两侧的函数值异号,则称该零点为函数(fx)的变号零点。②若函数(fx)在零点0x左右两侧的函数值同号,则称该零点为函数(fx)的不变号零点。

  ③若函数(fx)在区间,ab上的图像是一条连续的曲线,则0

  2、函数零点的判定

  (1)零点存在性定理:如果函数)(xfy在区间],[ba上的图象是连续不断的曲线,并且有(fa)(fb),那么,函数(xfy)在区间,ab内有零点,即存在,(0bax,使得0)(0xf,这个0x也就是方程0)(xf的根。

  (2)函数)(xfy零点个数(或方程0)(xf实数根的个数)确定方法

  ①代数法:函数)(xfy的零点0)(xf的根;②(几何法)对于不能用求根公式的方程,可以将它与函数)(xfy的图象联系起来,并利用函数的性质找出零点。

  (3)零点个数确定

  0)(xfy有2个零点0)(xf有两个不等实根;0)(xfy有1个零点0)(xf有两个相等实根;0)(xfy无零点0)(xf无实根;对于二次函数在区间,ab上的零点个数,要结合图像进行确定。

  3、二分法

  (1)二分法的定义:对于在区间[,]ab上连续不断且(fa)(fb)的函数(yfx),通过不断地把函数(yfx)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法;

  (2)用二分法求方程的近似解的步骤:

  ①确定区间[,]ab,验证(fa)(fb)给定精确度e;

  ②求区间(,)ab的中点c;③计算(fc);

  (ⅰ)若(fc),则c就是函数的零点;

  (ⅱ)若(fa)(fc),则令bc(此时零点0(,)xac);(ⅲ)若(fc)(fb),则令ac(此时零点0(,)xcb);

  ④判断是否达到精确度e,即ab,则得到零点近似值为a(或b);否则重复②至④步。

  集合间的基本关系

  1、子集,A包含于B,记为:,有两种可能

  (1)A是B的一部分,

  (2)A与B是同一集合,A=B,A、B两集合中元素都相同。

  反之:集合A不包含于集合B,记作。

  如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,,B=C。A是C的子集,同时A也是C的真子集。

  2、真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)

  3、不含任何元素的.集合叫做空集,记为Φ。Φ是任何集合的子集。

  4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。

  例:集合共有个子集。(13年高考第4题,简单)

  练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。

  解析:

  集合A有3个元素,所以有23=8个子集。分别为:①不含任何元素的子集Φ;②含有1个元素的子集{1}{2}{3};③含有两个元素的子集{1,2}{1,3}{2,3};④含有三个元素的子集{1,2,3}。

  集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。

  此处这么罗嗦主要是为了让同学们注意写的顺序,数学就是要讲究严谨性和逻辑性的。一定要养成自己的逻辑习惯。如果就是为了提高计算能力倒不如直接去菜场卖菜算了,绝对能飞速提高的,那学数学也没什么必要了。

  一、函数模型及其应用

  本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。

  1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。

  2、用函数解应用题的基本步骤是:

  (1)阅读并且理解题意。(关键是数据、字母的实际意义);

  (2)设量建模;

  (3)求解函数模型;

  (4)简要回答实际问题。

  常见考法:

  本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。

  误区提醒:

  1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。

  2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。

  【典型例题】

  例1:

  (1)某种储蓄的月利率是0。36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利)。

  (2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式。如果存入本金1000元,每期利率2。25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数。y=100+100×0。36%·x=100+0。36x,当x=5时,y=101。8,∴5个月后的本息和为101。8元。

  例2:

  某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)

  (1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。

  (2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得利润,其利润约为多少万元。(精确到1万元)。

  集合

  集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:

  1、分散的人或事物聚集到一起;使聚集:紧急~。

  2、数学名词。一组具有某种共同性质的数学元素:有理数的~。

  3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年—1918年,德国数学家先驱,是集合论的,目前集合论的基本思想已经渗透到现代数学的所有领域。

  集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。集合

  集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。

  元素与集合的关系

  元素与集合的关系有“属于”与“不属于”两种。

  集合与集合之间的关系

  某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。『说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教材课本里将?符号下加了一个≠符号(如右图),不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。』

  集合的几种运算法则

  并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A且属于B的元差集表示

  素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因为A和B中都有1,5,所以A∩B={1,5}。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说A∪B={1,2,3,5}。图中的阴影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减集合

  1再相乘。48个。对称差集:设A,B为集合,A与B的对称差集A?B定义为:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},则A?B={a,c,d}对称差运算的另一种定义是:A?B=(A∪B)-(A∩B)无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令N_是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:AB={x│x∈A,x不属于B}。注:空集包含于任何集合,但不能说“空集属于任何集合”。补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}空集也被认为是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中没有的3,4就是CuA,是A的补集。CuA={3,4}。在信息技术当中,常常把CuA写成~A。

  集合元素的性质

  1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。

  2.独立性:集合中的元素的个数、集合本身的个数必须为自然数。

  3.互异性:集合中任意两个元素都是不同的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。

  4.无序性:{a,b,c}{c,b,a}是同一个集合。

  5.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A={x|x

必修一数学总结5

  1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  解析式

  顶点坐标

  对称轴

  y=ax^2

  (0,0)

  x=0

  y=a(x-h)^2

  (h,0)

  x=h

  y=a(x-h)^2+k

  (h,k)

  x=h

  y=ax^2+bx+c

  (-b/2a,[4ac-b^2]/4a)

  x=-b/2a

  当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h<0时,则向左平行移动|h|个单位得到.

  当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;

  当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)^2+k的图象;

  当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;

  因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.

  2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).

  3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小.

  4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

  (a≠0)的两根.这两点间的距离AB=|x?-x?|

  当△=0.图象与x轴只有一个交点;

  当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.

  5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x=-b/2a时,y最小(大)值=(4ac-b^2)/4a.

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.

  6.用待定系数法求二次函数的.解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a≠0).

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x?)(x-x?)(a≠0).

  7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.

必修一数学总结6

  一集合

  1、集合的含义:集合为一些确定的、不同的对象的全体。2、集合的中元素的三个特性:确定性、互异性、无序性。3、集合的表示:

  (1)用大写字母表示集合:A,B…(2)集合的表示方法:

  a、列举法:将集合中的元素一一列举出来{a,b,c}b、描述法:集合中元素的公共属性描述出来,写在大括号内表示集合,xRx23c、维恩图:用一条封闭曲线的内部表示.

  4、集合的分类:

  (1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:aA;aA注意:常用数集及其记法:

  非负整数集:(即自然数集)N正整数集:Nx或N+整数集:Z有理数集:Q实数集:R

  6、集合间的基本关系(1)“包含”关系子集

  定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含

  关系,称集合A是集合B的子集。记作:AB(或BA)

  注意:AB有两种可能(1)A是B的一部分;

  (2)A与B是同一集合。

  B或BA反之:集合A不包含于集合B,或集合B不包含集合A,记作A(2)“包含”关系真子集

  如果集合AB,但存在元素xB且xA,则集合A是集合B的真子集,记作AB(或BA)

  (3“相等”关系:A=B“元素相同则两集合相等”,如果AB同时BA那么A=B

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。(4)集合的性质

  ①任何一个集合是它本身的子集,AA②如果AB,BC,那么AC③如果AB且BC,那么AC

  ④有n个元素的集合,含有2n个子集,2n-1个真子集

  7、集合的运算

  运算类型交集并集定义由所有属于A且属于B由所有属于集合A或属的元素所组成的集合,于集合B的元素所组成叫做A,B的交集.记作的集合,叫做A,B的并AB(读作‘A交B’)集.记作:AB(读作‘A并B’)补集全集:一般,若一个集合含有我们所研究问题中的所有元素,我们就称这个集合为全集,记作:U设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作CSA,韦恩图示ABABSA图1图2CU(CUA)A性质A∩A=AA∩Φ=ΦA∩B=BAAUA=AAUΦ=AAUB=BUAAU(CuA)=UA∩(CuA)=Φ.A∩BAA∩AUBABBAUBB二函数1.函数的概念:记法y=f(x),x∈A.

  2.函数的三要素:定义域、值域、对应法则

  3.函数的表示方法:(1)解析法:(2)图象法:(3)列表法:4.函数的基本性质

  a、函数解析式子的求法

  (1)代入法:(2)待定系数法:(3)换元法:(4)拼凑法:

  b、定义域:能使函数式有意义的实数x的集合称为函数的定义域。(1)分式的分母不等于零;

  (2)偶次方根的被开方数大于等于零;

  (3)对数式的真数必须大于零;(4)零次幂式的底数不等于零;(5)分段函数的.各段范围取并集;

  (6)如果函数是由一些基本函数通过四则运算结合而成的那么,它的定义域是使各部分都有意义的x的值组成的集合;

  (7)实际问题中的函数的定义域还要保证实际问题有意义.c、相同函数的判断方法;定义域一致②对应法则一致

  d.区间的概念:

  e.值域(先考虑其定义域)5.分段函数6.映射的概念

  对于映射f:A→B来说,则应满足:

  (1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。注意:函数是特殊的映射。7、函数的单调性(局部性质)(1)增减函数定义(2)图象的特点

  如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的

  (3)函数单调区间与单调性的判定方法(A)定义法:○1取值;○2作差;○3变形;○4定号;○5结论.(B)图象法(从图象上看升降)

  (C)复合函数的单调性:“同增异减”

  注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.

  8、函数的奇偶性(整体性质)(1)奇、偶函数定义

  (2)具有奇偶性的函数的图象的特征

  偶函数的图象关于y轴对称;奇函数的图象关于原点对称.(3)利用定义判断函数奇偶性的步骤:

  a、首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,则是非奇非偶的函数;若对称,则进行下面判断;b、确定f(-x)与f(x)的关系;

  c、作出相应结论:若f(-x)=f(x),则f(x)是偶函数;

  若f(-x)=-f(x),则f(x)是奇函数.

  注意:函数定义域关于原点对称是函数具有奇偶性的前提条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.(4)函数的奇偶性与单调性

  奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性。(5)若已知是奇、偶函数可以直接用特值9、基本初等函数

  一、一次函数

  二、二次函数:二次函数的图象与性质,注意:二次函数值域求法三、指数函数(一)指数

  1、有理指数幂的运算法则2、根式的概念3、分数指数幂

  正数的分数指数幂的

  anam(a0,m,nNx,n1),amnmn1amn1nam(a0,m,nNx,n1)

  (二)指数函数的性质及其特点

  1、指数函数的概念:一般地,函数yax(a0,且a1)叫做指数函数,其中x是自变量,

  函数的定义域为R.

  2、指数函数的图象和性质a>16540

  注意:换底公式

  logablogcb(a0,且a1;c0,且c1;b0).logca1nlogab;(2)logabmlogba利用换底公式推导下面的结论(1)logambn.

  (三)对数函数

  1、对数函数的概念:函数ylogax(a0,且a1)叫做对数函数,其中x是自变量,

  函数的定义域是(0,+∞).

  2、对数函数的性质:a>10

必修一数学总结7

  (一)、映射、函数、反函数

  1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射。

  2、对于函数的概念,应注意如下几点:

  (1)掌握构成函数的三要素,会判断两个函数是否为同一函数。

  (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式。

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数、

  3、求函数y=f(x)的反函数的一般步骤:

  (1)确定原函数的值域,也就是反函数的定义域;

  (2)由y=f(x)的解析式求出x=f—1(y);

  (3)将x,y对换,得反函数的习惯表达式y=f—1(x),并注明定义域、

  注意:

  ①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起、

  ②熟悉的应用,求f—1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算、

  (二)、函数的解析式与定义域

  1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域。求函数的定义域一般有三种类型:

  (1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;

  (2)已知一个函数的解析式求其定义域,只要使解析式有意义即可。如:

  ①分式的分母不得为零;

  ②偶次方根的被开方数不小于零;

  ③对数函数的真数必须大于零;

  ④指数函数和对数函数的底数必须大于零且不等于1;

  ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等。

  应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的`公共部分(即交集)。

  (3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可。

  已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域。

  2、求函数的解析式一般有四种情况

  (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式。

  (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法。比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可。

  (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域。

  (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(—x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式。

  (三)、函数的值域与最值

  1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:

  (1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域。

  (2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元。

  (3)反函数法:利用函数f(x)与其反函数f—1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得。

  (4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法。

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧。

  (6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域。其题型特征是解析式中含有根式或分式。

  (7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域。

  (8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域。

  2、求函数的最值与值域的区别和联系

  求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值。因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异。

  如函数的值域是(0,16],最大值是16,无最小值。再如函数的值域是(—∞,—2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2。可见定义域对函数的值域或最值的影响。

  3、函数的最值在实际问题中的应用

  函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值。

  (四)、函数的奇偶性

  1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数)。

  正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=—f(x)或f(—x)=f(x)是定义域上的恒等式。(奇偶性是函数定义域上的整体性质)。

  2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式。

必修一数学总结8

  第一章集合与函数概念

  一、集合有关概念

  1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.

  2、集合的中元素的三个特性:

  1.元素的确定性;2.元素的互异性;3.元素的无序性

  说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.

  (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素.

  (3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样.

  (4)集合元素的三个特性使集合本身具有了确定性和整体性.

  3、集合的表示:

  { … }如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  2.集合的表示方法:列举法与描述法.

  注意啊:常用数集及其记法:

  非负整数集(即自然数集)记作:N

  正整数集N*或N+整数集Z有理数集Q实数集R

  关于“属于”的概念

  集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A ,相反,a不属于集合A记作a?A

  列举法:把集合中的元素一一列举出来,然后用一个大括号括上.

  描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法.用确定的条件表示某些对象是否属于这个集合的方法.

  ①语言描述法:例:{不是直角三角形的三角形}

  ②数学式子描述法:例:不等式x-3>2的`解集是{x?R| x-3>2}或{x| x-3>2}

  4、集合的分类:

  1.有限集含有有限个元素的集合

  2.无限集含有无限个元素的集合

  3.空集不含任何元素的集合例:{x|x2=-5}

  高一数学必修一综合测试真题

  第I卷(选择题)

  1.设集合U={1,2,3,4,5},A={1,2,3},B={2,3,4},则U(A∩B)=

  A.{1,4,5}B.{2,3}C.{4,5}D.{1,5}

  2.设集合A={x|x2﹣4x+3≥0},B={x|2x﹣3≤0},则A∪B=

  A.(﹣∞,1]∪[3,+∞)B.[1,3]C.D.

  3.若全集U={1,2,3,4,5},集合M={1,2},N={2,3,4},则(UM)∩N等于

  A.{1}B.{2}C.{3,4}D.{5}

  4.已知集合A={﹣1,2},B={x∈Z|0≤x≤2},则A∩B等于

  A.{0}B.{2}C.φD.φ

  5.设集合A={x|2x≤8},B={x|x≤m2+m+1},若A∪B=A,则实数m的取值范围为.

  A.[﹣2,1)B.[﹣2,1]C.[﹣2,﹣1)D.[﹣1,1)

  6.已知集合A={1,2,3},B={0,1,2},则A∩B的子集个数为

  A.2B.3C.4D.16

  7.如果集合A={x|ax2﹣2x﹣1=0}只有一个元素则a的值是

  A.0B.0或1C.﹣1D.0或﹣1

  8.已知集合M={x|(x﹣1)=0},那么

  A.0∈MB.1MC.﹣1∈MD.0M

  9.设A={x|﹣1≤x<2},B={x|x<a},若A∩B≠,则a的取值范围是

  A.a<2B.a>﹣2C.a>﹣1D.﹣1<a≤2

  10.以下五个写法中:①{0}∈{0,1,2};②{1,2};③{0,1,2}={2,0,1};④0∈;⑤A∩=A,正确的个数有

  A.1个B.2个C.3个D.4个

  11.集合{1,2,3}的真子集的个数为

  A.5B.6C.7D.8

  12.已知3∈{1,a,a﹣2},则实数a的值为

  A.3B.5C.3或5D.无解

  13.已知集合A={﹣1,1},B={x|ax+2=0},若BA,则实数a的所有可能取值的集合为

  A.{﹣2}B.{2}C.{﹣2,2}D.{﹣2,0,2}

  14.设所有被4除余数为k(k=0,1,2,3)的整数组成的集合为Ak,即Ak={x|x=4n+k,n∈Z},则下列结论中错误的是A.20xx∈A0B.﹣1∈A3C.a∈Ak,b∈Ak,则a﹣b∈A0D.a+b∈A3,则a∈A1,b∈A2

  二、填空题

  16.已知集合A={﹣1,3,2m﹣1},集合B={3,m2}.若BA,则实数m=.17.对于任意集合X与Y,定义:①X﹣Y={x|x∈X且xY},②X△Y=(X﹣Y)∪(Y﹣X),(X△Y称为X与Y的对称差).已知A={y|y=2x﹣1,x∈R},B={x|x2﹣9≤0},则A△B=.

  18.函数y=的定义域为A,值域为B,则A∩B=.

  19.若集合为{1,a,}={0,a2,a+b}时,则a﹣b=.20.用M[A]表示非空集合A中的元素个数,记|A﹣B|=,若A={1,2,3},B={x||x2﹣2x﹣3|=a},且|A﹣B|=1,则实数a的取值范围为.

  三、解答题

  21.已知不等式x2+mx+3≤0的解集为A=[1,n],集合B={x|x2﹣ax+a≤0}.

  (1)求m﹣n的值;

  (2)若A∪B=A,求a的取值范围.

  22.已知函数f(x)的定义域为(0,4),函数g(x)=f(x+1)的定义域为集合A,集合B={x|a<x<2a﹣1},若A∩B=B,求实数a的取值范围.

  23.已知A={x|x2+x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A∪B=R,求a、b的值.24.已知集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},(UA)∩B={﹣2},求实数p、q、r的值.

  25.已知元素为实数的集合S满足下列条件:①0S,1S;②若a∈S,则∈S.

  (Ⅰ)若{2,﹣2}S,求使元素个数最少的集合S;

  (Ⅱ)若非空集合S为有限集,则你对集合S的元素个数有何猜测?并请证明你的猜测正确.

  26.已知集合A={x|x2﹣3x﹣4≤0},B={x|x2﹣2mx+m2﹣9≤0},C={y|y=2x+b,x∈R}

  (1)若A∩B=[0,4],求实数m的值;

  (2)若A∩C=,求实数b的取值范围;

  (3)若A∪B=B,求实数m的取值范围.

  试卷答案

  1.A 2.D 3.C 4.B 5.B 6.C 7.D 8.D 9.C 10.B 11.C 12.B 13.D 14.D 16.1

  17.[﹣3,﹣1)∪(3,+∞)

  18.[0,2]

  19.﹣1

  20.0≤a<4或a>4

  21.(1)利用韦达定理,求出m,n,即可求m﹣n的值;

  (2)若A∪B=A,BA,分类讨论求a的取值范围.

  【解答】解:(1)∵不等式x2+mx+3≤0的解集为A=[1,n],

  ∴,∴m=﹣4,n=3,

  ∴m﹣n=﹣7;

  (2)A∪B=A,∴BA.

  ①B=,△=a2﹣4a<0,∴0<a<4;②B≠,设f(x)=x2﹣ax+a,则,∴4≤a≤,

  综上所述,0<a≤.

  22.【解答】解:要使g(x)有意义,则:0<x+1<4,

  ∴﹣1<x<3,

  ∴A={x|﹣1<x<3};

  ∵A∩B=B,

  ∴BA;

  ①若B=,满足BA,

  则a≥2a﹣1,解得a≤1;

  ②若B≠,则,

  解得1<a≤2;

  综上,实数a的取值范围是(﹣∞,2].

  23.【解答】解:集合A={x|x2+x>0}={x|x<﹣1或x>0}∴﹣1,2是方程x2+ax+b=0的两个根,

  ∴a=﹣1,b=﹣2

  即a,b的值分别是﹣1,﹣2.

  24.【解答】解:集合A={x|x2+px+1=0},B={x|x2+qx+r=0},且A∩B={1},

  ∴1+p+1=0,解得p=﹣2;

  又1+q+r=0,①

  (UA)∩B={﹣2},

  ∴4﹣2q+r=0,②

  由①②组成方程组解得q=1,r=﹣2;

  ∴实数p=﹣2,q=1,r=﹣2.

  本题考查了集合的定义与应用问题,是基础题目.

  25.【解答】解:(Ⅰ)2∈S,则﹣1∈S,∈S,可得2∈S;﹣2∈S,则∈S,∈S,可得﹣2∈S,

  ∴{2,﹣2}S,使元素个数最少的集合S为{2,﹣1,,﹣2,,}.

  (Ⅱ)非空有限集S的元素个数是3的倍数.

  证明如下:

  (1)设a∈S则a≠0,1且a∈S,则∈S,=∈S,=a∈S

  假设a=,则a2﹣a+1=0(a≠1)m无实数根,故a≠.

  同理可证a,,两两不同.

  即若有a∈S,则必有{a,,}S.

  (2)若存在b∈S(b≠a),必有{b,,}S.{a,,}∩{b,,}=.

  于是{a,,,b,,}S.

  上述推理还可继续,由于S为有限集,故上述推理有限步可中止,

  ∴S的元素个数为3的倍数.

  26.【解答】解:(1)由A中不等式变形得:(x﹣4)(x+1)≤0,

  解得:﹣1≤x≤4,即A=[﹣1,4];

  由B中不等式变形得:(x﹣m+3)(x﹣m﹣3)≤0,

  解得:m﹣3≤x≤m+3,即B=[m﹣3,m+3],

  ∵A∩B=[0,4],

  ∴,

  解得:m=3;

  (2)∵由C中y=2x+b>b,x∈R,得到C=(b,+∞),且A∩C=,A=[﹣1,4],

  ∴实数b的范围为b≥4;

  (3)∵A∪B=B,

  ∴AB,

  ∴,

  解得:1≤m≤2.

必修一数学总结9

  圆锥曲线性质:

  一、圆锥曲线的定义

  1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆.

  2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的`距离)的动点轨迹叫做双曲线.即.

  3.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线.当01时为双曲线.

  二、圆锥曲线的方程

  1.椭圆:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)

  2.双曲线:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)

  3.抛物线:y2=±2px(p>0),x2=±2py(p>0)

  三、圆锥曲线的性质

  1.椭圆:+=1(a>b>0)

  (1)范围:|x|≤a|y|≤b(2)顶点:(±a,0),(0,±b)(3)焦点:(±c,0)(4)离心率:e=∈(0,1)(5)准线:x=±

  2.双曲线:-=1(a>0,b>0)(1)范围:|x|≥a,y∈R(2)顶点:(±a,0)(3)焦点:(±c,0)(4)离心率:e=∈(1,+∞)(5)准线:x=±(6)渐近线:y=±x

  3.抛物线:y2=2px(p>0)(1)范围:x≥0,y∈R(2)顶点:(0,0)(3)焦点:(,0)(4)离心率:e=1(5)准线:x=-

必修一数学总结10

  几何体和体积具有柱、锥、台、球的结构特征

  (1)棱柱:

  几何特征:两个底面是平行于对应边的全等多边形;侧面和对角为平行四边形;侧边平行相等;平行于底面的截面是与底面相等的多边形.

  (2)棱锥

  几何特征:侧面和对角为三角形;平行于底面的截面与底面相似,相似比等于从顶点到截面距离和高比的平方.

  (3)棱台:

  几何特征:上下底面是相似的平行多边形侧面是梯形侧边交给原棱锥的顶点

  (4)圆柱:定义:以矩形一侧所在的直线为轴旋转,其侧旋转

  几何特征:底面为全等圆;母线与轴平行;轴垂直于底圆的半径;侧展图为矩形.

  (5)圆锥:定义:旋转轴以直角三角形的直角边为旋转轴,旋转一周

  几何特征:底面为圆;母线交于圆锥的顶点;侧展图为扇形.

  (6)圆台:定义:旋转轴以垂直直角梯形和底部腰部为旋转轴,旋转一周

  几何特征:上下底面有两个圆;侧母线交给原圆锥的顶点;侧展图为弓形.

  (7)球体:定义:以半圆直径直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:球的截面是圆的;球面上任何一点到球心的距离等于半径.

  2.空间几何三视图

  定义三个视图:正视图(光线从几何前面投影到后面);侧视图(从左到右)

  俯视图(从上到下)

  注:正视图反映物体的高度和长度;俯视图反映物体的长度和宽度;侧视图反映物体的高度和宽度.

  3.空间几何直观图-斜二测绘法

  斜二测绘法特点:与x轴平行的线段仍与x平行,长度不变;

  与y轴平行的线段仍与y平行,长度为原来的一半.

  4.柱、锥、台的表面积和体积

  (1)几何体的表面积是几何体各个面积的和.

  (2)特殊几何体表面积公式(c底部周长,h为高,为斜高,l为母线)

  (3)柱、锥、台的体积公式

  总结高中数学必修二知识点:直线和方程

  (1)直线倾斜角

  定义:x轴向和直线向上方向之间的角称为直线倾斜角.特别是当直线与x轴平行或重合时,我们将其倾斜角设置为0度.因此,倾斜角的值范围为0°≤α<180°

  (2)直线斜率

  定义:倾斜角不是90°直线,倾斜角的正切称为直线的斜率.直线斜率常用k表示.即.斜率反映了直线和轴的倾斜程度.

  当时,;当时,;当时,.

  两点以上的直线斜率公式:

  注意以下四点:(1)当时公式右侧毫无意义,直线斜率不存在,倾斜角90°;

  (2)k与P1、P2的顺序无关;(3)以后求斜率可以通过直线上两点的坐标直接获得,而不是倾斜角;

  (4)直线上两点的坐标先求斜率可以获得直线的.倾斜角.

  (3)直线方程

  点斜:直线斜率k,且过点

  注:当直线的斜率为0时°时,k=直线方程为y=y1.

  当直线的斜率为90时°当直线斜率不存在时,其方程不能用点斜表示.但是l上的每一个横坐标都等于x所以它的方程是x=x1.

  斜截:,直线斜率为k,Y轴上直线的截距为b

  两点式:()直线两点,截矩式:

  直线与轴交点,与轴交点,即与轴和轴的截距.

  一般式:(A,B不全为0)

  注:各种适用范围的特殊方程,如:

  (4)平行于x轴的直线:(b为常数);与y轴平行的直线:(a为常数);

  (5)直线系方程:即具有一定共同性质的直线

  (一)平行直线系

  直线系统平行于已知直线(不全为0):(C为常数)

  (二)垂直线系

  直线系垂直于已知直线(不全为0的常数):(C为常数)

  (3)直线系过定点

  ()直线系斜率为k:,直线过定点;

  ()有两条直线,交点的直线系方程为

  (参数)直线不在直线系中.

  (6)两条直线平行垂直

  注:利用斜率判断直线的平行和垂直时,应注意斜率的存在.

  (7)两条直线的交点

  相交

  交点坐标是方程组的一组解.

  方程组无解;方程组有无数的解和重叠

  (8)两点间距公式:平面直角坐标系中的两点

  (9)点到直线距离公式:点到直线的距离

  (10)两平行直线距离公式

  在任何一条直线上任取一点,然后转化为点到直线的距离求解。

必修一数学总结11

  这学期我担任高一7、8两个普通班的数学教学工作。深入研究教法,经过一个学期的努力,获取了很多宝贵的教学经验。以下是我在本学期的教学情况总结:

  教学就是教与学,两者是相互联系,不可分割的,有教者就必然有学者。学生是被教的主体。因此,了解和分析学生情况,有针对地教对教学成功与否至关重要。一方面,从学生基础来看,学生底子,另一方面,上课比较活跃,上课气氛非常积极,但中等生、差等生占较大的比例,尖子生相对比较少。因此,讲得太深,没有照顾到整体,我备课时也没有注意到这点,因此教学效果不是很理想。从此可以看出,了解及分析学生实际情况,实事求是,具体问题具体分析,做到因材施教,对授课效果有直接影响,这根提高数学高效课堂有很大的关系。这就是教育学中提到的“备教法的同时要备学生”。这一理论在我的教学实践中得到了验证。

  教学中,备课是一个必不可少,十分重要的环节,备学生,又要备教法。备课不充分或备得不好,会严重影响课堂气氛和积极性,曾有一位前辈对我说:“备课备不好,倒不如不上课,否则就是白费心机”。我明白到备课的重要性,因此,每天我都花费大量的时间在备课之上,认认真真钻研教材和教法,不满意就不收工。虽然辛苦,但事实证明是值得的。

  一堂准备充分的课,会令学生和老师都获益不浅。如果照本宣科地讲授,学生会感到困难和沉闷。为了上好这堂课,我认真研究了教材,找出了重点,难点,准备有针对性地讲。为了令教学生动,不沉闷,我还为此准备了大量的比较感兴趣的事例和教具,授课时就胸有成竹了。

  备课充分,能调动学生的积极性,上课效果就好。但同时又要有驾驭课堂的能力,因为学生在课堂上的一举一动都会直接影响课堂教学。因此上课一定要设法令学生投入,不让其分心,这就很讲究方法了。上课内容丰富,现实。教态自然,讲课生动,难易适中照顾全部,就自然能够吸引住学生。所以,老师每天都要有充足的精神,让学生感受到一种自然气氛。这样,授课就事半功倍。回看自己的授课,我感到有点愧疚,因为有时我并不能很好地做到这点。当学生在课堂上无心向学,违反纪律时,我的情绪就受到影响,并且把这带到教学中,让原本正常的讲课受到冲击,发挥不到应有的'水平,以致影响教学效果。我以后必须努力克服,研究方法,采取有利方法解决当中困难。

  数学是一门工具学科,对学生而言,既熟悉又困难,在这样一种大环境之下,要教好数学,就要让学生喜爱数学,让他们对数学产生兴趣。否则学生对这门学科产生畏难情绪,不愿学,也无法学下去。为此,我采取了一些方法,就是尽量多讲一些笑话和数学典故,让他们更了解数学,更喜欢学习数学。只有激发学生学习数学的乐趣,才能提高同学们的解题能力,对成绩优秀的同学很有好处。

  因为数学的特殊情况,学生在不断学习中,会出现好差两极分化的现象,差生面扩大,会严重影响班内的学习风气。因此,绝对不能忽视。为此,我制定了具体的计划和目标。对这部分同学进行有计划的辅导。数学是语言。困此,除了课堂效果之外,还需要让学生多想,多练。为此,在自修时,我坚持下班了解自修情况,发现问题及时纠正。课后发现学生作业问题也及时解决,及时讲清楚,让学生即时消化。另外,对部分不自觉的同学还采取扎实基础的方式,先打实他们的基础,然后想办法提高他们的能力。

  由于经验颇浅,许多地方存在不足,希望在未来的日子里,能在学校领导老师、前辈们的指导下,取得更好成绩。

必修一数学总结12

  空间中直线与平面、平面与平面之间的位置关系

  1、直线与平面有三种位置关系:

  (1)直线在平面内——有无数个公共点

  (2)直线与平面相交——有且只有一个公共点

  (3)直线在平面平行——没有公共点

  指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示aαa∩α=Aa∥α

  2、直线、平面平行的判定及其性质

  (1)直线与平面平行的判定

  (2)直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

  简记为:线线平行,则线面平行。

  集合的分类

  (1)按元素属性分类,如点集,数集。

  (2)按元素的个数多少,分为有/无限集

  关于集合的概念:

  (1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。

  (2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。

  (3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的'标准。

  集合可以根据它含有的元素的个数分为两类:

  含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。

  非负整数全体构成的集合,叫做自然数集,记作N;

  在自然数集内排除0的集合叫做正整数集,记作N+或N—;

  整数全体构成的集合,叫做整数集,记作Z;

  有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。)

  实数全体构成的集合,叫做实数集,记作R。(包括有理数和无理数。其中无理数就是无限不循环小数,有理数就包括整数和分数。数学上,实数直观地定义为和数轴上的点一一对应的数。)

必修一数学总结13

  一、集合有关概念

  1. 集合的含义

  2. 集合的中元素的三个特性:

  (1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性,3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}

  (1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

  (2) 集合的表示方法:列举法与描述法。

  ? 注意:常用数集及其记法:

  非负整数集(即自然数集) 记作:N

  正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

  1) 列举法:{a,b,c……}

  2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}

  3) 语言描述法:例:{不是直角三角形的三角形}

  4) Venn图:

  4、集合的分类:

  (1) 有限集 含有有限个元素的集合

  (2) 无限集 含有无限个元素的集合

  (3) 空集 不含任何元素的集合 例:{x|x2=-5}

  二、集合间的基本关系

  1.“包含”关系—子集

  注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

  反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A

  2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

  实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

  即:① 任何一个集合是它本身的子集。A?A

  ②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)

  ③如果 A?B, B?C ,那么 A?C

  ④ 如果A?B 同时 B?A 那么A=B

  3. 不含任何元素的集合叫做空集,记为Φ

  规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

  ? 有n个元素的集合,含有2n个子集,2n-1个真子集

  三、集合的运算

  运算类型 交 集 并 集 补 集

  定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.

  由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).

  设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)

  二、函数的有关概念

  1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

  注意:

  1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

  求函数的定义域时列不等式组的主要依据是:

  (1)分式的分母不等于零;

  (2)偶次方根的被开方数不小于零;

  (3)对数式的真数必须大于零;

  (4)指数、对数式的底必须大于零且不等于1.

  (5)如果函数是由一些基本函数通过四则运算结合而成的那么,它的定义域是使各部分都有意义的x的值组成的集合.

  (6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.

  相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)

  2.值域 : 先考虑其定义域

  (1)观察法

  (2)配方法

  (3)代换法

  3. 函数图象知识归纳

  (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .

  (2) 画法

  A、 描点法:

  B、 图象变换法

  常用变换方法有三种

  1) 平移变换

  2) 伸缩变换

  3) 对称变换

  4.区间的概念

  (1)区间的分类:开区间、闭区间、半开半闭区间

  (2)无穷区间

  (3)区间的数轴表示.

  5.映射

  一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B

  6.分段函数

  (1)在定义域的不同部分上有不同的解析表达式的函数。

  (2)各部分的自变量的取值情况.

  (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.

  补充:复合函数

  如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。

  二.函数的性质

  1.函数的单调性(局部性质)

  (1)增函数

  设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1

  如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的.单调减区间.

  注意:函数的单调性是函数的局部性质;

  (2) 图象的特点

  如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的

  (3).函数单调区间与单调性的判定方法

  (A) 定义法:

  ○1 任取x1,x2∈D,且x1

  ○2 作差f(x1)-f(x2);

  ○3 变形(通常是因式分解和配方);

  ○4 定号(即判断差f(x1)-f(x2)的正负);

  ○5 下结论(指出函数f(x)在给定的区间D上的单调性).

  (B)图象法(从图象上看升降)

  (C)复合函数的单调性

  复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

  注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.

  8.函数的奇偶性(整体性质)

  (1)偶函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

  (2).奇函数

  一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

  (3)具有奇偶性的函数的图象的特征

  偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

  利用定义判断函数奇偶性的步骤:

  ○1首先确定函数的定义域,并判断其是否关于原点对称;

  ○2确定f(-x)与f(x)的关系;

  ○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

  (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;

  (3)利用定理,或借助函数的图象判定 .

  9、函数的解析表达式

  (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

  (2)求函数的解析式的主要方法有:

  1) 凑配法

  2) 待定系数法

  3) 换元法

  4) 消参法

  10.函数最大(小)值(定义见课本p36页)

  ○1 利用二次函数的性质(配方法)求函数的最大(小)值

  ○2 利用图象求函数的最大(小)值

  ○3 利用函数单调性的判断函数的最大(小)值:

  如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

  如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

必修一数学总结14

  二次函数

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II.二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)

  顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]

  交点式:y=a(x-x?)(x-x?)[仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a

  III.二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

  IV.抛物线的`性质

  1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2.抛物线有一个顶点P,坐标为

  P(-b/2a,(4ac-b^2)/4a)

  当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。

  3.二次项系数a决定抛物线的开口方向和大小。

  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

必修一数学总结15

  1.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。

  2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。

  3.不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。高考中不等式试题的命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。

  4.立体几何知识:2016年已经变得简单,2017年难度依然不大,基本的三视图的`考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。

  5.解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。

  6.导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。

  7.开放型创新题:答案不,或是逻辑推理题,以及解答题中的开放型试题的考查,都是重点,理科13,文科14题。

【必修一数学总结】相关文章:

高一数学必修一知识点总结05-19

数学必修三知识点总结11-24

必修5数学知识点总结12-06

必修一化学知识点总结12-15

必修生物一知识点总结11-25

生物必修一知识点总结07-20

高一历史必修一知识点总结07-19

高中数学必修2知识点总结11-22

【优选】生物必修一知识点总结07-20

必修一必修二生物知识点03-01