《二元一次方程组》说课稿

时间:2024-06-14 18:33:36 设计 我要投稿
  • 相关推荐

《二元一次方程组》说课稿

  作为一名教学工作者,常常要写一份优秀的说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。如何把说课稿做到重点突出呢?以下是小编收集整理的《二元一次方程组》说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

《二元一次方程组》说课稿

《二元一次方程组》说课稿1

  一、教学设计的理念

  1、树立“以人为本,人人都学有价值的数学,不同的人在数学上得到不同的发展”的理念。

  2、通过动手实验、合作交流培养学生自主探索,寻找结论的学习意识。

  3、通过本节课教学,加强对学生思维方法的训练,增强小组合作意识

  二、教学内容的重组加工

  1、学生分析

  认知起点,学生已初步掌握了本章知识,他们已经能比较熟练得求出二元一次方程组的解,知道用二元一次方程组表示等量关系。七年级学生活泼好动,乐于展示、表现自我,求知欲较强,他们的逻辑思维以开始处于优势地位。

  2、教材分析

  本章知识是在学习了一元一次方程即应用后的又一种重要的用来表示数量关系的数学模型,用它解决某些实际问题比用一元一次方程更简捷,但在解法上他们又存在着相互转化的关系,在这节的教学中不仅要让学生充分认识到消元这种思想方法的重要性,更重要的是让他们进一步体会知识的形成过程,提高他们能准确选择模型解决问题的能力。

  3、教学重点、难点分析

  难点:已知一组解,如何构造二元一次方程组使解相同

  重点:解二元一次方程组

  4、教学目标

  (1)知识与技能:进一步体会列二元一次方程组解决实际问题的优越性,熟练用消元法解二元一次方程组。

  (2)过程与方法:通过自主探索过程,培养对数学的感情,培养分析问题能力及从实际问题中抽象出数学模型的能力,学会与人合作,交流自己的方法意见。向终身学习型人才发展。

  (3)情感与态度:引导学生探索发现,培养学生主动探索,乐于合作交流的品质和素养,让学生先猜测再动手实践加以验证,懂得实践是检验真理的唯一标准的道理。鼓励学生有自己独特见解,培养学生的创新品质。

  5、教学方法分析

  本节课采用“探究、讨论、发现”的方法。因为它符合本节课教学内容的特点,从学生年龄来说讨论法虽然更适合于高年级的学生,但这是一节复习课,我认为复习应该是知识的整合和提高的过程,因此也可以。

  三、教学过程及反思

  我的教学过程可分为三个环节

  一、探索只用二元一次方程也能解决实际问题,但答案不唯一。

  二、探索要使一的问题答案是唯一的,那么在刚才的基础上应该再添加一个,关于这两个未知数的关系的条件,然后才能列出二元一次方程组解出唯一答案。这个环节是难点。这样设计的目的是通过过程探索加深学生对二元一次方程组的解的理解,即它是两个方程的公共解,同时与列一元一次方程形成对比,即需要两个条件才能得出唯一答案。再者通过对一个问题实施两种列法,一种解法,也体现了二元与一元之间的转化思想。

  第三个过程是解方程组训练消元法的应用。目的让学生进一步熟炼消元这种数学方法,同时使知识形成一个完整的体系。

  我对自己的设计思路比较满意,因为我一直以为学数学就是领悟数学思想方法,训练思维,提高推理分析的能力。在平时的教学中我一直比较注重发散思维的训练,和逆向思维的训练,注重引导学生从多个角度两个方向分析问题。引导学生在课堂活动中感悟知识的`生成、发展与变化过程

  我的课领导们已经听了过程就不再赘述。下面我按照教学环节把我这节课分析一下;

  一采用刘三姐对歌引入,切近生活,激发兴趣,引起学生注意。提出问题后,学生受定向思维影响,认为答案是唯一的,这种情况下我用提问的方式激发学生思考,如我问一个男孩的困惑在那里,然后给与合理提示,使他们继续讨论得出答案。缺点:备学生不充分,以致引题较难,脱离育才学生实际,今后应注意开讲很重要但要注意所选问题的难易程度。

  二突破难点仍然采用讨论法,期间部分学生思维受阻,我请一名同学解释了他的解题过程,又加以适当引导和鼓励,使讨论达到高潮。优点是能鼓励学生用实验的办法寻求解题思路,引导他们通过对比的方法发现二元一次方程组和一元一次方程之间的联系,在考虑到时间不够用的情况下,仍然坚持让学生继续展开讨论,上黑板展示自己的劳动成果,并且我认为,通过这节课的训练这些孩子肯定会喜欢上讨论交流这种形式的,通过这节课教学使他们已经完成了一个从羞于讨论到开始讨论的过程。我在巡视的过程中发现了这种微妙的变化我很高兴。缺点是:引导方向不够明确,浪费了学生的时间。数学是一门精确的学问,不允许教师含糊其辞,不允许让学生猜你要表达什么意思,如:我在第一个问题解决了以后,问孩子们:你们能不能添上一个条件使分法是唯一的呢/实际上这个问法对这些孩子来说还是跳跃性太大,致使他们再次陷入迷惘,我想如果我这样处理是不是更好一些:老师在黑板上把同学们刚才回答的几组解列出来,然后让他们观察每一组解之间的关系,再添条件构造方程。给我的教训是向学生提问不是一件轻而易举的事情,要问得新奇,问得有趣,问得巧妙,问得具有启发性,问得难而有度,问得高而可攀,就非得是前做好充分准备,精心构思不可。学生的时间是宝贵的,因此我要学会提出一个真正称得上是问题的问题。今后备课我应该认真考虑到各个环节,做好各种准备工作。

  三解方程组因为时间不够用处理非常仓促我原本的意图是想通过对比让他们体会代入消元源自于实际问题。因为这章知识点是解在前用在后,而我复习的时候把它倒过来也是这个原因。我组织他们讨论解方程组时经常出现的哪些错误,这样能使学生在轻松的过程里接受这些错误从进而改正他们。另外这节课还存在两个问题:小组活动单一化小组,活动结束后应该让他们充分展示自己的劳动成果,增加成就感。小组合作意识不强列,回答问题不积极,原因之一是他们的表达能力根本跟不上,我在巡视时有许多孩子跟我说老师我不知道该怎么说。所以我认为这种自主探究,合作交流的教学形式应该继续搞下去,孩子的表达能力继续锻炼。

  大家都知道凯慕柏莉奥立佛近日当选为20xx—年美国年度教师这在美国是一项殊高的荣誉。他曾经说:“好老师不必是那些上出成功课或教出得分最高班的老师。好老师是那些有能力去反思一堂课理解什么是对了什么是错了寻找策略让下次更好的教师,以上是我对我的授课过程的分析,有不当之处恳请各位领导批评指正。

《二元一次方程组》说课稿2

  一、内容分析

  1.1学习任务分析:二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解,是本节课的核心概念。它既是一元一次方程的延续,又是三元一次方程组的基础。

  1.2学生情况分析:就方程而言,初一学生已有一元一次方程的有关知识。所以本节课将引导学生自己发现新的方程并尝试通过类比“发现”有关新概念,使学生逐步建立方程的知识体系。但对学生来说二元一次方程组的解的表达形式是陌生的,对他们来说正确写出解并理解其含义具有一定的难度。

  二、学习目标设计

  知识目标:使学生掌握二元一次方程、二元一次方程的解、二元一次方程组、二元一次方程组的解的概念。能辨别那些是二元一次方程(组),并能正确的写出他们的解

  能力目标:通过尝试命名新方程、尝试“发明”有关概念,培养学生知识移的能力,并从初一开始养成建立知识体系的习惯。通过学生自己设计问题,充分发挥其主体性,培养创新意识。

  情感目标:体验数学发现中的快乐,激发学生自主学习的乐趣。

  重点二元一次方程(组)及二元一次方程(组)的解的概念。

  难点理解、判断二元一次方程(组)的解,并能用正确的形式表达二元一次方程(组)的解。

  三、课堂结构设计

  动手实验,引导学生发现问题(课题)、尝试命名和定义

  练习反馈

  结合实验,引导学生设计问题并发现方程组

  练习反馈

  引导学生在小结巩固中更好的理解概念分层练习,引导学生积极探索

  回归实验,学生完善自己的设计

  四、教学媒体设计

  充分利用PPT演示文稿的高效性、板书的实效性和可留性以及事物演示的直观性,将它们有机结合,各取其长。

  五、教学过程设计

  5.1动手实验,引导学生发现问题(课题)、尝试命名和定义。

  实验情境:请学生将手中40厘米长的绳子绷成一个长方形。(课前结已打好,所占长度忽略不计)

  相互交流:学生相互交流所绷成的长方形是否完全相同,有何异同之处。

  (异:各自的长和宽不同;同:周长都是40厘米。)得出实验结论:周长为40厘米的长方形有无数个。(同时借助多媒体演示实验过程与结论)

  引出课题:如果宽设为x厘米,长设为y厘米,你能发现x和y的关系么?(x+y=20)。学生会感觉这个式子既熟悉又陌生。熟悉的是这是个方程,陌生的是它是什么方程。引导学生将它与已学的一元一次方程作比较,(未知数的个数不同),进而请学生尝试给这样的方程命名,并给出命名的理由。(二元一次方程)。引出课题。并且由学生仿照一元一次方程的定义尝试定义二元一次方程。

  二元一次方程的解:请学生说出二元一次方程的解的定义,(使二元一次方程左右两边相等的两个未知数的值)。强调是两个未知数的值。

  就x+y=20这个方程而言,它的解是多少呢?学生发现有无数个,如x=1,y=19;x=2,y=18;通过设问x=1时,y还能取什么值?让学生理解虽有无数个解,但x和y是相互制约的,所以前面要加,x=1这y=19一对值就是这个二元一次方程的一个解。并请学生规范的写出一些解。

  这无数个解都适合这个长方形问题么?学生讨论后可得出,负数不行,小数可以,所以长方形问题仍然是无数个解,从而用方程解的知识解释了实验的结论。

  最终用数学知识解释了实验的结论。

  设计说明:实验与二元一次方程相对应,实验的结果与二元一次方程的无数个解相对应。每位学生都参与到实验中,用心感受x、y间的关系,激发探索数学知识的乐趣。并且这个实验将作为一条主线贯穿整个课堂。

  学生自己发现、命名二元一次方程以及概念的知识基础是一元一次方程,知识迁移的要求不高,具有可行性。

  练习1:下列哪些是二元一次方程,哪些不是?

  ① ②

  ③ ④

  学生回答,并紧扣定义说明理由。

  设计说明:牢抓二元、一次、方程三个关键词,设计问题,及时巩固定义。

  请学生小结一元一次方程和二元一次方程的'区别和联系。

  练习2:写出二元一次方程y—x=10的一些解。

  设计说明:在讲解解的问题中有三个关键点:

  1、二元一次方程的解有无数个;

  2、每一个解由x和y这一对相互制约的值组成;

  3、解的书写格式。并通过练习反馈掌握情况。

  5.2结合实验,引导学生设计问题并发现方程组。

  5.2.1二元一次方程组的定义

  周长为40厘米的长方形有无数个,若希望这道题的答案是一个而不是无数个,请学生想办法满足我的要求。(小组讨论)

  从学生设计出的众多问题中选一个讲解,若加条件:长比宽长10厘米。

  此时长y宽x需要同时满足x+y=20和y—x=10,如何在书写上体现“同时”呢?

  x+y=20

  前面加上,请学生给y—x=10命名。(二元一次方程组)并给出定义,像这样,把两个二元一次方程合在一起就组成了二元一次方程组。

  设计说明:仍通过原来的实验,自然引出二元一次方程组。

  练习3:下列方程组中是二元一次方程组的有:

  (1)(2)(3)(4)

  学生分析前三个,对第(4)个展开讨论

  把两个二元一次方程合在一起是二元一次方程组,但二元一次方程组不一

  定都是这样,如第(4)个方程组中共有两个未知数,未知数的指数都是1,它也是二元一次方程组。(强调是方程组中的未知数共2个)

  练习4:判断下列方程组是否是二元一次方程组:

  x=2 x+y=5

  y=-1 2y-3z=1

  设计意图:因为书上给出的定义是描述性定义,为了避免学生理解上产生偏差,特设计这一组练习,以强调所谓二元即指整个方程组中共含有两个未知数。

  5.2.2二元一次方程组的解

  研究方程组x+y=20的解。 y—x=10

  在分别研究了这两个方程解的基础上,请学生对它们所组成方程组的解各抒己见,最终达成共识:把两个二元一次方程的公共解称为二元一次方程组的解。并发现找公共解麻烦,下课前告诉学生有快速求解的方法。

  设计意图:激发学生的好奇心和探索欲望。

  5.3学会小结,引导学生在小结巩固中更好的理解概念。

  至此长方形问题圆满解决,满足这个条件的长方形只有一个:长15厘米,宽5厘米。在解决这个问题的过程中学了一些新的知识,二元一次方程,二元一次方程的解,二元一次方程组,二元一次方程组的解。

  练习5:方程组的解是()

  (强调公共解)

  练习6:写一个解为的二元一次方程。

  变:写一个解为的二元一次方程组。

  练习7:就实验中的长方形问题,每位学生完整的写出设计的题目,并解答。

  设计说明:练习5巩固二元一次方程组的解的定义;

  练习6锻炼学生逆向思维的能力;

  练习7由于在刚刚设计中只采纳了一位学生的设计,现在给大家展示自我的机会,并且通过这个问题巩固全课的知识,前后呼应。

  5.4课后作业:

  必做题:94页练习、95页1、2。

  选做题:95页综合运用3、4;

  探索解二元一次方程组的方法。

  六、教学评价设计

  考虑本节课概念多的特点,所以在每个概念的给出后都设立了一个小练习,以反馈学生的掌握情况,便于及时发现问题解决问题。在设置的练习中除了检查对基本知识的掌握,同时重视学生的思维训练,并通过开放题等培养学生的创新意识。

《二元一次方程组》说课稿3

  一、教材的地位与作用

  在人教版教材的七至九年级的数学教材中,对方程进行知识性重点学的地方先后出现3次:七年级上册第二章(一元一次方程),七年级下册第八章(二元一次方程组),九年级上册第二十二章(一元二次方程)。所以二元一次方程组这章正处在对前面学习过的一元一次方程的有关知识起着检查巩固的,又为以后方程的学习进一步打下基础的作用。

  二元一次方程组的知识对学生以后学习一次函数,将来对有关线性方程的学习和研究都是一个中重要的入门基础。方程组是解决含有多个未知数问题的重要的数学工具,很多实际问题的解决都是用方程(组)这种数学模型来解决的,通过二元一次方程组的'学习培养学生数学建模的数学思想和数学方法,为将来他们从事现实问题的线性分析和研究有着启蒙和激发效果。

  二、教学目标

  1、知识技能:能根据实际问题列出二元一次方程(组),了解二元一次方程(组)的含义,理解二元一次方程(组)的解的含义,会求待定条件下的二元一次方程(组)的解,并会检验给定的一对未知数的值是否是二元一次方程(组)的解。

  2、数学思考:在根据实际情况列二元一次方程(组)解决实际问题的过程中体会到数学建模的思想,培养学生分析问题的数学意识。

  3、解决问题:能根据问题中的未知数的个数列出相应的二元一次方程(组)

  4、情感体验:①在列方程组—表示和解决实际问题的过程中,体验到数学的实用性,提高学习数学的兴趣。

  ②在探讨解决问题的过程中,敢于发表自己的见解,理解他人的看法并与他人交流。

  三、教学重点、难点

  重点:能用二元一次方程(组)来表示一些实际问题的数量关系,弄清二元一次方程(组)及它们解的含义。

  难点:能针对具体问题列出二元一次方程(组),对二元一次方程(组)的解的探求。

  四、教法

  (1)启发式教学

  (老师耐心引导、分析、讲解和设置启发式提问,引导学生对本节知识的理解和掌握)

  (2)学案式教学

  (让学生自己阅读,自主讨论,探索研究获得知识,得出结论)

  五、学法

  在老师的引导下,充分发挥学生的主观能动性,通过观察、讨论、分析、探索等步骤,自己发现问题提出问题,解决问题,能师生互动、生生互动,提高学生的合作意识,共同来完成教学目标。

  六、教学过程

  (一)复述回顾:以二人小组完成学案上的3个问题;

  (二)创设情境――引入课题。

  鸡兔同笼

  今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?让学生用一元一次方程解决问题。

  设一个未知数列一元一次方程来解

  就会出现方程:2x+4(35—x)=94(设鸡x只)

  ①4x+2(35—x)=94(设兔x只)②.....

  让学生设俩未知数来解,估计大部分同学列不出来,那么无论列出与否,引出正题——二元一次方程组。

  (三)设问导读与自我检测

  同学们自己阅读课本,并完成设问导读与自我检测的问题,完成之后,小组讨论,与组长核对答案,先组内解决疑难问题,教师下去收集问题,并指导学生对新知识的探究。

  1、对鸡兔同笼问题列方程,设鸡x只,兔y只,X+y=35

  ③2x+4y=94④......

  先引导学生观察方程③、④有什么特点。这样的方程叫什么方程?(试着让学生说出二元一次方程的定义)举例说明需要注意的地方,和一些难以分辨的方程,马上做自我检测第一题,发现问题解决问题。

  2、前面的问题同事满足③、④,把他们和在一起就组成二元一次方程组,试着让学生说出定义,做自我检测第三题,说明第四个也是二元一次方程组。

《二元一次方程组》说课稿4

  一、教材分析

  1、教材的地位和作用

  本节主要内容是在上一节已学习了二元一次方程(组)和二元一次方程(组)的解的概念的基础上,来学习解方程组的第一种方法____代入消元法。并初步体会解二元一次方程组的基本思想————“消元”。二元一次方程组的求解,用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面利用方程组来解决实际问题打下了基础。

  2、教学目标

  根据本课教材的特点、课程标准对本节课的教学要求、学生的身心发展的合理需要,我从三个不同的方面确立了以下教学目标:

  (1)知识技能目标:

  1)会用代入法解二元一次方程组

  2)初步体会解二元一次方程组的基本思想————消元

  (2)能力目标:通过对方程组中未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,由未知向已知的转化,培养观察能力和体会化规思想。通过用代入消元法解二元一次方程组的训练,培养运算能力。

  (3)情感目标:通过研究解决问题的方法,培养学生合作交流意识与探究精神。

  3、重点、难点

  根据学生的认知特点,我确立了本节课的重难点。

  重点:用代入消元法解二元一次方程组

  难点:探索如何用代入法将“二元”转化为“一元”的消元过程。

  为了突出重点、突破难点,让学生动手操作,积极参与并主动探索解题方法,我设计并制作了多媒体课件,帮助学生理解代入消元法。

  成功的教学必须选择合适的教法和学法,因此我确定如下教法和学法:

  二、教学方法

  我采用了探究式教学方法,设疑思考、点拨启发、小组探究、逐步深入。

  三、学法指导

  我采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

  四、教学设计

  1、根据以上分析,我设计了以下六个教学环节:

  2、教学过程

  下面我就每一个教学环节,具体介绍我对本节课的教学设想。

  环节一:创设情境

  活动一:出示引例:我校举办“奥运杯”篮球联赛,每场比赛都要分出胜负,胜1场得2分,负1场得1分,我班篮球队为了取得好名次,想在全部22场比赛中得40分,那么我班篮球队胜负场数应分别是多少?

  学生活动:列方程或方程组解决问题

  教师关注:学生是否能够多角度地考虑问题、设计意图:创设问题情景,让学生从生活中发现数学问题,激发学生的学习兴趣。

  环节二、尝试发现

  活动二:小组探究:能否将二元一次方程组转化为一元一次方程进而求得方程组的解呢?

  学生活动:小组探究二元一次方程组的解法,初步体验解二元一次方程的步骤。

  教师关注:学生思维角度是否合理,学生是否能抓住问题的核心部分。

  设计意图:在学生小组讨论的过程中提供充分从事数学活动的机会,从而激发学生的学习积极性,体会在解决问题的过程中,与他人合作的重要性。

  活动三:小组展示

  学生活动:分小组针对老师给出的题目,展示解二元一次方程组的方法。

  教师关注:关注:学生用语言表达自己的观点的准确性与全面性。

  设计意图:在学生小组展示的过程中,要让学生尽情发挥,这样才能因材施教。发展学生有条理思考问题的能力和表达能力。

  活动四:再看转化、把握解题技巧

  学生活动:观察转化过程中的技巧,并尝试总结。

  设计意图:转化是解方程组的重要环节,也是提高解题速度和正确度的关键,在这里探讨,帮助学生更好的掌握代入消元法。

  环节三、小组闯关

  活动五:闯关练习一,解二元一次方程组,分小组竞争过关比例。

  学生活动:做练习题

  教师关注:学生解题的步骤的完整性,和解题的'正确并及时的纠正错误

  设计意图:掌握用代入消元法解方程组的一般过程,会解二元一次方程组并体会消元的思想。

  活动六:闯关练习二,给出一个利用二元一次方程组解决的实际问题,拓展学生的思维。

  学生活动:独立完成本题。

  设计意图:在前面学习解二元一次方程组的基础上,提出实际问题,发展学生得多角度思维能力。

  环节四、拓展升华

  活动七:出示例题2、

  学生活动:先独立思考,在同学之间交流一下想法,然后解决问题。

  教师关注:学生是否可以找到等量关系,列出方程组,解方程组。

  设计意图:通过用方程组解决实际问题,培养学生运用代入消元法解方程组的技能和分析问题,解决问题的能力。达到将所学知识进一步升华的目的。

  环节五:反思小结

  活动八:我有哪些收获?

  学生活动:学生归纳总结

  教师关注:

  (1)学生是否养成归纳、整理、总结的好习惯;

  (2)评价学生是否全面理解并掌握了本节课的知识。

  环节六、布置作业

  1、必做题:

  P103第2题⑵ ⑷,第4题

  2、选做题:

  设计意图:分层次,选择作业题,有利于学有余力的学生的发展。

  最后我以著名数学家笛卡尔的一句话结束这节课。

  五、板书设计

  8.2二元一次方程组的解法

  ————代入消元法

  1、二元一次方程组一元一次方程

  2、代入消元法的一般步骤:

  3、思想方法:转化思想、消元思想、方程(组)思想、六、教学感想

  在教学过程中,我始终:

  坚持一个原则____教为主导,学为主体

  坚守一个理念____先学后教,以学定教

  贯穿一个思想____享受数学,快乐学习

《二元一次方程组》说课稿5

  一、关于教材地位和作用的分析

  《二元一次方程组的解法(5)》是在前面学习了列一元一次方程解应用题及二元一次方程组的解法(代入消元法和加减消元法)基础上的一节综合实际应用课。借助二元一次方程组解决一些简单的实际问题,这是数学联系实际的一个重要方面。对于含有多个未知数的实际问题,利用方程组去解决,其分析方法和解题步骤与列一元一次方程类似,而在列方程方面常比列一元一次方程容易些。教材在让学生在掌握了二元一次方程组的解法后,再次体验二元一次方程组与现实生活的联系和作用。通过本节课的教学,可使学生领悟到数学来源与实践,又反过来作用于实践的辨证唯物主义思想。这对学生进一步学习数学,将起到积极的作用。

  二、关于教学目标的确定

  (一)目标分析

  知识和技能目标:

  1、会根据具体问题中的数量关系列出二元一次方程组及求解

  2、能检验结果是否符合实际意义

  过程和方法目标

  1、通过使用代数中的方程去反映现实中的相等关系,体会代数方法的优越性

  2、在列方程组解应用题的过程中,体会列方程组往往比列一元一次方程容易。

  3、通过解应用题的学习,渗透把未知转化为已知的辨证思想,从而培养学生分析问题和解决问题的能力

  情感与态度目标

  1、学生在与同伴交流的学习过程中,形成良好的学习方式和学习态度,树立学习数学的自信心。

  2、通过列方程组解应用题的学习,认识到数学的价值。

  (二)重难点分析

  教学重点:根据实际问题的数量关系,找出两个等量关系,列出二元一次方程组。

  教学难点:正确找出两个实际问题中的两个等量关系,并把他们列成两个方程。

  难点突破采取的措施:

  1、可多种方法解决的实际问题引入,然后由师生共同寻找两个等量关系,多次体验列二元一次方程组解决实际问题的优越性

  2、用填空和选择的多种题型来寻找题目中的等量关系3、例题中两个问题将它们分列开,将难点分散

  三、关于教学方法的说明

  从一题多解的和尚吃馒头的引入开始,引导学生寻找等量关系,在合作中寻找解题途径,教师在此过程中做好一个组织者,合作者,引导者的作用,关注学生在此过程中的生命成长。帮助学生在方程探案中寻找等量关系,然后找到等量关系后,让学生尝试根据等量关系来列二元一次方程组解决问题,接着让学生在填空和选择中寻找等量关系,列方程组,最后是课本例题的教学,让学生自己寻找问题和分析问题,课外,让学生自己编题,领悟方法,这种教学方法符合以下教育过程的规律:

  1、遵循由旧引新,由浅入深,由特殊到一般再到特殊。体现掌握知识和发展智力相统一的规律。

  2、创设问题情境,教师不断启发和引导学生思考,由易到难,化整为简,体现教师在教学过程中的组织者、合作者和引导者的.作用。

  (二)学法分析

  这种教学方法实际上也教给了学生一种学习方法,使学生学会观察,注意生活中的实际问题,学会自己探究知识分析问题,解决问题,学会寻找、发现,学会归纳总结,逐步掌握获取知识的能力。

  (三)教学手段

  通过多媒体辅助教学,扩大教学容量,提高课堂教学效率。

  四、关于教学过程的设计。

  (一)导入设计

  先用轻松的师生对白,让学生进入问题,讨论多种方法解决实际问题,激活学生的思维细胞,让学生进入学习的状态,通过体验新知识的优越性,激发学生学习新知识的积极性。

  (二)尝试练习

  通过导入中的体验,让学生初步尝试解决问题的能力,在此过程中,有学生成功了,他们尝到了学习新知识的一种成就感,有学生失败了,鼓励他们继续学习,培养克服困难的信心和勇气。

  尝试练习

  1、方程探案记:你知道盗贼如何分赃吗

  一帮强盗抢来一批布匹,躲在了树林里分赃,由于傍晚天色太黑,看不清他们有多少人,只听见带头的一个强盗喊着说:“每人分布六匹,还剩5匹,每人分布7匹,又少8匹。“请你根据他的说话声来判断,究竟有多少强盗,多少布匹?

  大家一起探讨

  (三)范例设计

  通过对课本例题的难点进行分解,把一个较复杂的问题,分解成两个小问题,将难点分解。

  某蔬菜公司收购到某种蔬菜140吨,准备加工后上市销售。该公司的加工能力是:每天可以精加工6吨或粗加工16吨。现计划用15天完成加工任务。

  问:

  1、该公司应安排几天粗加工,几天精加工,才能按期完成任务?

  2、如果每吨蔬菜粗加工后的利润为1000元,精加工后为20xx元,那么照此安排,该公司出售这些加工后的蔬菜共可获利多少元?

  (四)反馈练习

  通过多种题型:填空、选择及问答的多种形式,培养学生从多角度地分析问题、解决问题的能力。最后,让学生根据课题来自编应用题,体现了数学在实际中的应用价值。

  (五)归纳小结

  教师启发,学生归纳列二元一次方程组解应用题的一般步骤和方法。

《二元一次方程组》说课稿6

  教学目标

  知识与技能:

  1、培养学生利用二元一次方程组解决实际问题的能力

  2、培养学生分析问题,归纳问题的能力

  情感态度与价值观

  让学生体会到数学在实际生活中的有用之处

  让学生积极投入到数学学习中去。

  重点:

  1、培养学生利用二元一次方程组解决实际问题的能力

  2、培养学生分析问题,归纳问题的能力

  难点:

  1、培养学生利用二元一次方程组解决实际问题的能力

  2、培养学生分析问题,归纳问题的能力

  教学方法:

  讲练结合法

  教具准备:

  幻灯片十张

  预习提示

  通过预习你能说出利用二元一次方程组解决实际问题的关键和基本步骤吗?

  教学过程:

  试一试

  探究一

  养牛场原有30只大牛和15只小牛,一天约用饲料675千克,一月后又购进12只大牛和5只小牛,这时一天约用饲料940千克,饲养员李大叔估计每只大牛一天约需饲料18—20千克,每只小牛一天约需饲料7—8千克。你能通过计算检验他的估计?

  分析:题中包含的基本等量关系式是?

  若设每只大牛每天约用饲料x千克,每只小牛每天约用饲料Y千克,根据等量关系可列方程组

  解这个方程组可得

  这就是说,每只大牛每天约用饲料____千克,每只小牛每天约用饲料____千克,因此,饲养员李大叔对大牛的食量估计____,对小牛的`食量估计____。

  检测题

  1有大小两种货车,2辆大车与3辆小车一次可以运货15、5吨,5辆大车与6辆小车一次可以运货35吨、。求每辆大车与小车每次各运多少吨货物?

  2买10支笔和15个笔记本需35元,买20支笔和40个笔记本需60元,问每只笔和每个笔记本各多少钱?

  探究2

  据统计资料,甲,乙两种作物的单位面积产量之比为1:1.5,现要把一块长200米,宽100米的长方形土地分成两小块长方形土地分别种植这两种作物,怎样划分这块土地,使甲,乙两种作物的总产量之比为3:4?﹙结果取整数﹚

  分析:甲作物的总产量=甲作物的种植面积单产量

  乙作物的总产量=乙作物的种植面积单产量

  若设AE=x米,BE= y米,则种植面积分别是____,____基本等量关系____,____于是可得方程组______,解这个方程组可得________,过长方形土地长端约____米把这块土地分成两块,较大的一块种____,较小的一块种____。

  检测题

  1、用白铁皮作罐头盒,每张铁皮可做盒身25个或盒底40个,一个盒身与两个盒底配成一套罐头盒。现有36张铁皮怎样分配可使制成的盒身与盒底正好配套?

  2、现有10立方米木料来制桌子,已知1立方米木料可制桌面15个或桌腿40个。一个桌面和4个桌腿配成一张桌子。怎样分配木料可使制成的桌面与桌腿正好配套?

  课堂小结

  通过本节课的学习,我们学会了利用二元一次方程组解决实际问题,其关键是找准等量关系,列方程组。

  作业

  108页4,9

【《二元一次方程组》说课稿】相关文章:

二元一次方程组知识总结06-26

二元一次方程组课后反思07-08

二元一次方程组教学设计06-05

《二元一次方程组》教学设计06-12

二元一次方程组的教学设计实录06-29

《二元一次方程组》板书设计06-21

二元一次方程组教学设计7篇06-06

二元一次方程组解法复习的评课稿06-29

(通用)二元一次方程组教学设计10篇04-30

【优选】《二元一次方程组》教学设计14篇04-22