等差数列复习课教学案例

时间:2022-07-03 11:16:35 语文 我要投稿
  • 相关推荐

等差数列复习课教学案例

  (一) 三维目标

等差数列复习课教学案例

  1. 知识与技能:复习等差数列的定义、通项公式、前n项和公式及相关性质.

  2. 过程与方法:师生共同回忆复习,通过相关例题与练习加深学生的理解.

  3. 情感与价值:培养学生观察、归纳的能力,培养学生的应用意识.

  (二) 教学重、难点

  重点:等差数列相关性质的理解。

  难点:等差数列相关性质的应用。

  (三) 教学方法

  师生共同探讨复习本课时的主要知识点,再通过例题、习题加深学生的应用意识,本节课采用多媒体辅助教学。

  (四) 课时安排

  1课时

  (五) 教具准备

  多媒体课件

  (六) 教学过程

  Ⅰ知识回顾

  1、等差数列定义

  一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

  2、等差数列的通项公式

  如果等差数列?an?首项是a1,公差是d,则等差数列的通项公式是an?a1?(n?1)d。 注意:等差数列的通项公式整理后为an?nd?(a1?d),是关于n的一次函数。

  3、等差中项

  如果a,A,b成等差数列,那么A叫着a与b的等差中项。 即:A?a?b,或 2A?a?b。 2

  4、等差数列的前n项和公式

  等差数列?an?首项是a1,公差是d,则Sn?注意:

  1) 该公式整理后为sn?n(a1?an)n(n?1)d。 =na1?22d2dn?(a1?)n,是关于n的二次函数,且常数项为0。 22

  2) 等差数列的前n项和公式推导过程中利用了“倒序相加求和法”。

  5、等差数列的判断方法

  a) 定义法:

  对于数列?an?,若an?1?an?d(常数),则数列?an?是等差数列。

  b) 等差中项法:

  对于数列?an?,若2an?1?an?an?2,则数列?an?是等差数列。

  6、等差数列的性质

  1.等差数列任意两项间的关系:如果an是等差数列的第n项, am是等差数列的第m项,公差为d,则有an?am?(n?m)d。

  2.对于等差数列?an?,若 n?m?p?q 则,an?am?ap?aq。

  3.若数列?an?是等差数列, Sn是其前n项的和, k?N ,那么Sk, S2k?Sk ,*

  S3k?S2k成公差为n2d的等差数列。

  II例题解析

  例1:等差数列?an?中,若a2 = 10,a6= 26 ,求a14

  解:略

  练习1:等差数列?an?中,已知a1= 1,a2+ a5 =4 3

  an = 33,则n是( )

  A.48B.49C.50 D.51

  例2:在三位正整数的集合中有多少个数是5的倍数?求它们的和。

  解:略

  练习2:等差数列?an?中, a1?a2?a3??24,a18?a19?a20?78,则此数列前20项的和等于()

  A.160B.180 C.200D.220

  例3:已知数列?an?的前n项和sn?n2?3,求 an

  解:略

  练习3:设等差数列?an?的前n项和公式是sn?(5n2?3n),求它的通项公式__________ 例4:已知等差数列?an? , 若a2+ a3 +a10+a11 =36 ,求a5+ a8

  解:略

  练习4:已知等差数列?an?中, a2+a8=8,则该数列前9项和等于 ( )

  A.18 B.27C.36 D.4 5

  例5:已知数列 ?an?是等差数列, bn= 3an + 4,证明数列?bn? 是等差数列。 证明:略

  2练习5:已知数列?an?的通项公式an?pn?3n (p?R)

  当p满足什么条件时,数列?an?是等差数列。

【等差数列复习课教学案例】相关文章:

第10课《唱游》教学案例04-11

数学复习课教学设计01-30

生物复习课教学反思03-30

体育课案例分析05-15

生物复习课教学反思10篇04-13

生物复习课教学反思(10篇)04-13

生物复习课教学反思(精选10篇)04-14

生物复习课教学反思(精选9篇)04-25

数学复习课教学设计15篇01-30

生物复习课教学反思9篇03-30