- 相关推荐
高二数学上册知识点总结
在平凡的学习生活中,大家都没少背知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。你知道哪些知识点是真正对我们有帮助的吗?下面是小编为大家整理的高二数学上册知识点总结,仅供参考,希望能够帮助到大家。

高二数学上册知识点总结
一、不等式的性质
1、两个实数a与b之间的大小关系
(1)a-b>0a>b;
(2)a-b=0a=b;
(3)a-b<0a<b
(4)ab>1a>b;若a、bR,则
(5)ab=1a=b;
(6)ab<1a<b
2、不等式的性质
(1)a>bb<a(对称性)
(2)a>bb>ca>c(传递性)
(3)a>ba+c>b+c(加法单调性)
a>bc>0ac>bc
(4)(乘法单调性)
a>bc<0ac<bc
(5)a+b>ca>c-b(移项法则)
(6)a>bc>da+c>b+d(同向不等式可加)
(7)a>bc<da-c>b-d(异向不等式可减)
(8)a>b>0c>d>0ac>bd(同向正数不等式可乘)
(9)a>b>00<c<dac>bd(异向正数不等式可除)
(10)a>b>0nNan>bn(正数不等式可乘方)
(11)a>b>0nNna>nb(正数不等式可开方)
(12)a>b>01a<1b(正数不等式两边取倒数)
3、绝对值不等式的性质
(1)|a|≥a;|a|=a(a≥0),-a(a<0)
(2)如果a>0,那么
|x|<ax2<a2-a<x<a;|x|>ax2>a2x>a或x<-a
(3)|ab|=|a||b|
(4)|ab|=|a||b|(b≠0)
(5)|a|-|b|≤|a±b|≤|a|+|b|
(6)|a1+a2++an|≤|a1|+|a2|++|an|
二、不等式的证明
1、不等式证明的依据
(1)实数的性质:a、b同号ab>0;a、b异号ab<0a-b>0a>b;a-b<0a<b;a-b=0a=b
(2)不等式的性质(略)
(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)
③ab2≥ab(a、bR,当且仅当a=b时取“=”号)
2、不等式的证明方法
(1)比较法:要证明a>b(a<b),只要证明a-b>0(a-b<0),这种证明不等式的方法叫做比较法。用比较法证明不等式的步骤是:作差变形判断符号。
(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法。
(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法。
证明不等式除以上三种基本方法外,还有反证法、数学归纳法等。
高二数学上册知识点总结
一、曲线与方程
1、椭圆
椭圆的定义是椭圆章节的基础内容,高考对本节内容的考查可能仍然将以求椭圆的方程和研究椭圆的性质为主,两种题型均有可能出现、椭圆方面的知识与向量等知识的综合考查命题趋势较强。
2、双曲线
标准方程的求法:双曲线标准方程最常用的两种方法是定义法和待定系数法、利用定义法求解,首先要熟悉双曲线的定义,只要知道双曲线的焦点和双曲线上的任意一点的坐标都可以运用定义法求解其标准方程;解法二是利用待定系数法求解,是求双曲线方程的根本方法之一,其思想是根据题目中的条件确定双曲线方程中的系数a,b,主要是解方程组;解法三是利用共焦点曲线系方程求解,其要点是根据题目中的一个条件写出含一个参数的共焦点的二次曲线系方程,再根据另外一个条件求出这个参数、
3、抛物线
(1)利用已知条件求抛物线方程,一般有两种方法:待定系数法和轨迹法。
(2)韦达定理的熟练运用,可以防止运算复杂的焦点坐标,巧妙利用抛物线的性质进行解题。
(3)焦点弦的几何性质是答题中容易忽略的问题,在复杂的求解抛物线方程中,运用好这方面的知识能够少走很多弯路。
用点差法解圆锥曲线的中点弦问题
二、空间几何体
1、空间几何体的考查主要以其识别和应用为主,以填空题的形式出现,分值大约在5分。对空间几何体的形状、位置关系、数量特征、表面积和体积的命题需要加以关注。
2、球的面积和体积:计算球的面积和体积就要求出球的半径,在具体的空间几何体中,首先要确定球心的位置,这样才能根据已知数据求出半径,除球以外的空间几何体在求体积时都离不开”高“,要注意使用线面垂直的相关定理确定高线。
三、正弦定理和余弦定理
1、正弦定理在一个三角形中,各边和它所对角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R
2、余弦定理三角形中,任意一边的平方等于另外两边的平方和减去另两边及其夹角的余弦的积的两倍。
3、例题:熊丹老师教你正弦定理做题时的注意事项
高二数学上册知识点总结
一、变量间的相关关系
1.常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.
2.从散点图上看,点分布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关,点分布在左上角到右下角的区域内,两个变量的相关关系为负相关.
二、两个变量的线性相关
从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫回归直线.
当r>0时,表明两个变量正相关;
当r
r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0时,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.
三、解题方法
1.相关关系的判断方法一是利用散点图直观判断,二是利用相关系数作出判断.
2.对于由散点图作出相关性判断时,若散点图呈带状且区域较窄,说明两个变量有一定的线性相关性,若呈曲线型也是有相关性.
3.由相关系数r判断时|r|越趋近于1相关性越强.
高二数学上册知识点总结
1、空间直线与直线之间的位置关系
(1)异面直线定义:不同在任何一个平面内的两条直线
(2)异面直线性质:既不平行,又不相交。
(3)异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线
异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。
(4)求异面直线所成角步骤:
A、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上。
B、证明作出的角即为所求角C、利用三角形来求角
(5)等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。
(6)空间直线与平面之间的位置关系
直线在平面内——有无数个公共点。
三种位置关系的符号表示:aαa∩α=Aaα
(7)平面与平面之间的位置关系:
平行——没有公共点;αβ
相交——有一条公共直线。α∩β=b
2、空间中的平行问题
(1)直线与平面平行的判定及其性质
线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。
线线平行线面平行
线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,
那么这条直线和交线平行。线面平行线线平行
(2)平面与平面平行的判定及其性质
两个平面平行的判定定理
(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行
(线面平行→面面平行),
(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。
(线线平行→面面平行),
(3)垂直于同一条直线的两个平面平行,
两个平面平行的性质定理
(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。(面面平行→线面平行)
(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。(面面平行→线线平行)
3、空间中的垂直问题
(1)线线、面面、线面垂直的定义
两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。
线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。
平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。
(2)垂直关系的判定和性质定理
线面垂直判定定理和性质定理
判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。
性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
面面垂直的判定定理和性质定理
判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。
性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。
4、空间角问题
(1)直线与直线所成的角
两平行直线所成的角:规定为。
两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。
两条异面直线所成的角:过空间任意一点O,分别作与两条异面直线a,b平行的直线,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。
(2)直线和平面所成的角
平面的平行线与平面所成的角:规定为。平面的垂线与平面所成的角:规定为。
平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。
求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。
在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线,
在解题时,注意挖掘题设中两个主要信息:
(1)斜线上一点到面的垂线;
(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。
(3)二面角和二面角的平面角
二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。
二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角。
直二面角:平面角是直角的二面角叫直二面角。
两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角
求二面角的方法
定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角
垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角
【高二数学上册知识点总结】相关文章:
高二数学知识点总结08-30
高二数学知识点总结11-14
高二数学知识点总结最新11-09
初二数学上册知识点总结02-05
高二必修二数学知识点总结优秀09-21
高二数学的选修1知识点总结(通用7篇)10-16
高二语文知识点总结07-27
高二物理知识点总结01-22
高二政治上册《联系地、发展的看问题》知识点总结范例01-21
高二会考物理知识点总结09-25